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Abstract

We investigate the existence of Painlevé—Kovalevskaya expansions for various reductions to ordi-
nary differential equations of the Ricci-flat equations. We investigate links between such expansions
and metrics of exceptional holonomy.
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1. Introduction

One tool in the study of differential equations is to investigate the existence of families of
meromorphic solutions. This technique goes back to Kovalevskaya's work on integrable tops
[9] and to Painlevé’s work on movable singularities of solutions to differential equations.
For more recent work on this subject, see, for exarfih2).

In this paper we shall investigate the existence of such meromorphic expansions for
the cohomogeneity one Ricci-flat Einstein equations when the isotropy representation of
the principal orbit consists of two inequivalent summands. Two rather special cases were
analysed irj6], including the situation of double warped product metrics. For these metrics,
we found that larger families of Painlevé expansions existed in the 10 and 11-dimensional
cases than in other dimensions. These were exactly the dimensions where, in some cases,
conserved quantities for the equations were fouridjin
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Some of the themes of the analysis[@} recur in the current paper. We find that the
existence and size of families of such Painlevé expansions depend rather sensitively on the
choice of principal orbit. In particular, certain features (such as the existence of certain types
of Painlevé expansion) occur only if the dimension of one or both of the summands in the
isotropy representation is small.

Asin[6], existence of a non-trivial family is often associated to the existence of a solution
to a Diophantine equation (such as the presence of an integral point on an elliptic curve),
and this may single out certain dimensions as special.

Finally, we find that Painlevé expansions are sometimes linked to the existence of a
subsystem of the Ricci-flat equations representing metrics of exceptional holonomy, cf.
Examples 7.1 and 7.4

The layout of the paper is as follows. 8ections 2 and 8e choose variables so as to
put the Einstein system into a form suitable for Painlevé analysiSelition 4we begin
our study of the case when the principal or6if K has two distinct summands in its
isotropy representation aridis not maximal inG. We find the possible leading terms of a
Painlevé expansion (as j] we allow expansions which are meromorphic in a fractional
power of the independent variable). Next3action Swe substitute the expansion into the
equations and find the recursion relations that the coefficients must satisfy. We compute the
resonances, that is, the steps in the recursion at which free parameters may enter. These are
the steps at which the linear operator in the recursion fails to be invertible. Existence of
Painlevé expansions depending on a large number of parameters requires there to be many
rational resonances, and this often leads to Diophantine constraints on the parameters in
the equations. IiBection 6we study the compatibility conditions for the recursion at the
resonances to be solvablgection 7is devoted to examples. I8ection 8we perform a
similar analysis for the case whéhis maximal inG. Lastly, we describe isection %he
asymptotic behaviour of the Ricci-flat metrics corresponding to our Painlevé expansions.

2. TheEinstein equationsand an associated quadratic system

We consider the Einstein equations for a cohomogeneity one rgetitb principal orbit
G /K, where the isotropy representatiomi®notypic that is we have

g=tepP®- - - Sps,

where the summangss areinequivalentk -modules of real dimensiaf). The metricg may
be written as &f + g,, where

g =e10B|, 1 ... LelrOp|, (2.1)

andB is a background metric o/ K induced by some bi-invariant metric ¢h We used
to denote the vector of dimensioqé, . .., d,), and letn = ) _;_, d; denote the dimension
of the principal orbit. The cohomogeneity one Einstein metric therefore lives on a space of
dimensiom + 1.

As explained in[5] the Einstein equations Rig) = Ag may be written as a Hamil-
tonian flow together with the constrailif = 0 on the cotangent space of the space of
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G-invariant metrics orG/K. Writing ¢ = (g1, ...,q,) andp = (p1, ..., pr), wherep;
are the associated momentum variables, the Hamiltonian is

r+m .
H=e W2dapygh 1 e@2da [ 1y4 -3 4560 (2.2)
j=1

In the above/J is the symmetric matrix with entries

Jii = ! ! Jij = 1 for i £ j
||—n_1 di’ |J—n_1 l Js

and so it has one positive and- 1 negative eigenvalues. Furthermore, yeare constants,

thew'/) are vectors i, and the ternp /17" A; "4 is the scalar curvature of the metric
(2.1)on G/K. It follows from the scalar curvature formula of a homogeneous metric in
[10] that the vectorsn”) may be of three kinds:

(i) one entry is—1, the rest are zero;
(ii) one entryis 1, two are-1, the rest are zero;
(iii) one entry is 1, one is-2, the rest are zero.

In particularw™ - (1, ..., 1) = —1 in all cases. We denote wi” theith entry ofw(?.

In order to carry out the Painlevé analysis, it will be advantageous to replace Hamilton's
equations for the HamiltoniaH by a quadratic system involving-2- m new dependent
variables andn additional constraints. As well as simplifying calculations, this has the
advantage that general arguments about systems with only quadratic non-linearities guar-
antee that the formal series solutions we construct are in fact convergent on a punctured
neighbourhood of the singularity (42,6]).

A special caserf = 0) of this transformation was already used6h, where we adapted
to our situation a similar transformation of the Toda-lattice equations discussed by Adler
and van Moerbekg].

We now explain how the transformation works in the general situation, i.e., wherd.

LetC be amatrix such that~1J(C~1)T = diag(u1, . . ., ) and introduce new symplectic
coordinatesa, b by ¢ = Ca b = pC, and setd = dC, v’ = w’C. Taking a new
coordinates defined by d = e~1/24¢d;, we saw in[6] that the Einstein equations are
equivalent to the Hamiltonian flow for the new Hamiltonian

_ r _ r+m o
H=eY2dg =" b2 4+ (n— DA -y A el (2.3)
j=1 j=1

We shall assume that the set of vectofé contains a basis fd” (this is always true it; is
semisimple, cf. the proof of Theorem 3.11[%}), and by reordering we take®, ..., w®
to be such a basis. We defineanx r matrix v by

,
wl ) — Z Uijw(j) Ll<i<m).
j=1
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Notice that taking the scalar product of both sides with . ., 1) shows that

,
Zvij =1 foralli.
Jj=1

We now introduce a new set of symplectic coordinates by setting
X = ed+d™-a _ gd+w?)q (i=1....r,

andy; to be the associated momentum variablesILbe the invertible x » matrix defined
by Uj =d; + w;') (1<, j<r) andletE = UJU". If we also define/ = UC, then the
momentum variables satisfy

yi = Z bjUjixl-_l,
J

sob = (x1y1, ..., x,yr)l_].

Moreover,
a Iog X1
=yt ; ,
ay logx,

so settings = —dU 1, we have

Z.‘;:,' |ng,' = —da.
i=1

The new Hamiltonian now becomes

r B r+m .
H = Z Eijxiyixjyj+mn —1A ela Z Aj e(d+w(1))'“
i,j=1 j=1
r r ¢ r m r
_E, ”
=D Eypxiyixjyj+ 0= DALY =3 Ape; =3 Az [T
i,j=1 j=1 j=1 j=1 k=1

Hamilton’s equations fof in these variables are

,
xp = 2% ) Eijxjyj.
=1

r r m r
yz{ =—| 2y ZEijxjyj —(n— 1)A%_ixi ll_[xj T A — ZAj+erixi lanjk
=1 =1 = k=1
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fori =1, ..., r. Lettingu; = x;y; we can rewrite this as

.
xXi = 2x; Z Eiju; = 2x;(Ev);, (2.4)
j=1
m r ) r .
u, = Aixi + Z A v l_[ x,t'k + (n —DAg HX;'E/- (2.5)
j=1 k=1 j=1

We now specialise to the cage= 0. We set

r

Xjpr = (d+w*)a _ szjk A=<j<m), (2.6)
k=1
so that
,
x'jﬂ = Xjtr Z vjkxljlx;( = 2xj1r(VEU);. 2.7
k=1

Introduce a matrixJ defined by

so that

A (U>
U= ,
vU

and hence

(—v I,)U=0. (2.8)

Also UJUT is the(r + m) x (r + m) matrix whosdjth entry isJ(d + w®, d + w)). We
can write

UJO" =ebeT,

where
@ _ @l Orxm ’ b _ D Or><m i
@2 Omxm 0m><r 0m><m
D is ther x r matrix diag1, —1, ..., —1), ®1 isr x r and of rankr, ®2 is m x r, and

E = ©1D6O]. Observe that

T . . T
@D@T( Y ):UJ(UT< Y )):o
I, I
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from (2.8). But also

BoT —T\ (Dol pel\ (—T\ (-Dep’+De;
I )\ 0 0 In ) 0 ’

which can only be in the kernel @ if it is zero, that is, if©] = @] vT, and hence

T
AT V _ ™ol 0
bor () = ber (2. 29

Note that we have shown th@b = v©®1.
Letz; = A;x; and define

=be'( " ).
v (Omxl)

whereu is the column vector consisting of the. It follows thatv,y1 = -+ - = vy4, = 0.
Then from(2.4) and (2.7we havez; = 2z;(®v); and from(2.5) we obtain

<1
1 . T rtl
v’=b(~)T< “ ):i)@T i +< Y ) :
Omxl Zr Omxm
0m><1 “rm

Using(2.9), we finally obtain the following quadratic system:

r+m
3 =22 )  Ovj. (2.10)
j=1
r+m
vi=¢€ Y Ojzj, (2.11)
j=1
wheree; = 1,¢;, = —1forl < i<r, ande; =0 fori > r.
Observe that the Hamiltonial can now be written as
r+m
H:v%—v%—-n—vf—ZZj,
j=1

and the relation§2.6) may be viewed as additional constraints

r Vii
Lrtj <ﬁ>J (1<j<m) 2.12
A q P <j<m, (2.12)

which, together with the Hamiltonian constraifit = 0, single out the solutions which
solve the original Einstein system.
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Remark 2.1. On the other hand, if we are given the systghi0) and (2.11)then using
the property(2.9), it follows easily that:

.

- -1
[T1z1" ) lzisrl
Jj=1

are first integrals of the system.
In fact, we can define a Poisson structure on

Rri—‘rm X Rr+m = {((Zlv L] Zr+m)» (Ul, L] UV—H’"))v Zi € R - {0}5 U,’ € R7 }

by introducing the bivector

r+m

i d )
=Y @' —n—,
= a; 32,‘
i,j=1

whereQll = €;@jiz;, and using it to define the Poisson brackgt, F>} to be equal to

Z _QIJ 8F]_ an aFl an
— dv; dz; 9z v )
ij

Then the Hamiltonian vector field corresponding to the funciiamnder this Poisson struc-
ture is equivalent to the systen2.10) and (2.11) Furthermore, the variety
defined by

Tr+j . i Vi .
L:{vrﬂ-:o, H:H(A_,-) (1§J§m)}

Arj i

is a symplectic leaf of the above Poisson manifold and the Hamiltonian flo# oh
LN{H = 0} is equivalent to the conomogeneity one Einstein system. It follows immediately
that an integral curve of the systg10) and (2.11yvhich starts inC N {H = 0} remains

in it for all time.

Remark 2.2. If A # 0, sinced = —&U, we may add—¢ to the last row ofv, regard
(1 — n) A to be another constariy, and hence incorporate the tetm— 1) A €¢ into the
scalar curvature formula.

The above discussion also applies to the case when we have a Lorentz metric and the
principal orbits are space-like hypersurfaces. We simply need to replace all the constants
A; (including Ag if A # 0) by —A; and d2 in g by —d#2.

3. Thetwo-summand case

Let us specialise to the case where: 2, that is, there are two inequivalent summands
in the isotropy representation. Recall that the principal o8hiK is an almost effective
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connected compact homogeneous space, wWhiése compact Lie group ankl is a closed
subgroup, neither of which is assumed to be connected. According to the calculations
leading to (1.3) in[10], the scalar curvature of &@-invariant metric onG/K takes the

form

S= A1t — Ay el2 + Ageli—242 | A, el2—201 (3.1)

whereA; andA2 are non-negativedz = —(1/4) %21, A4 = —(1/4) 112, and the constant
Tjk denotes the sum

Z B([eOl’ Eﬂ], e}/)z

o, By

in which {e,}, {eg}, and{e,}, respectively, range oves-orthonormal bases qof;, p; and
pr. It follows that if ¢ is a maximal AdK)-invariant subalgebra af, thenA3 and A4 are
both negative. On the other handtitt § C g is an Ad K)-invariant proper intermediate
subalgebra, then we may assume after reindexingdhat 0. Furthermore, by the discus-
sion on p. 182 of10], fori = 1, 2, the constantd; = 0 iff the identity component ok
acts trivially onp;, p; is Abelian, andy;, p;] C p; for j # i.

Consequently, the possible weight vectof8 are(0, —1), (-1, 0), (1, —2), (—2, 1) and
the non-trivial situations to consider are when the)4atf weight vectors is:

() {0, 1), (-1,0)},
(i) {(0,-1), (1, -2},
(i) {0, -1), (-1,0), (1, —2)},0r
(IV) {(07 _1)7 (_17 O)v (17 _2)7 (_27 1)}

Cases (i) and (ii) were analysed|[#]. Situation (i) is the case of doubly-warped product
metrics where the hypersurface is a product of isotropy irreducible spaces (or more generally
Einstein spaces with non-zero Einstein constant). Case (ii) can occur if the hypersurface is
a torus bundle over an Einstein base. In both (i) and (ii) we lwave 0 so there are no
additional constraints in the equations.

In this paper we shall study Cases (iii) and (iv). Case (iv) is when the hypersi@face
has two inequivalent summands in its isotropy representation and wher@ maximal
Ad(K)-invariant subalgebra ig. A connected homogeneous spag¢k satisfying the
latter maximality condition is called primitive homogeneous space and by the proof
of Theorem 2.2 i{10], there always exists on it @-invariant Einstein metric. But the
maximality condition also means that the cohomogeneity one manifgi&) x I cannot
be compactified by adding singular orbits.

Thus Case (iii) is the generic situation when there are two distinct summands. In this case,
the principal orbit admits & -invariant Einstein metric iff4§+4AlA3(2d1 -|—d2)(d2/df) >
0 (cf. [10]). If equality holds, there is only one solution of the homogeneous Einstein
equation; otherwise, there are two solutions.

We will now specialise the discussion 8ection 2to Cases (iii) and (iv). However, we
will take the 2x 2 matrix D to be diag—1, 1) instead of diagl, —1). In Case (iii) we have
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m = 1 andd; # 1 (otherwiseAd; = 0 by the above discussion). Then

. di—1 d>
U= &« d2—1|, v=(-1 2),
di+1 do—-2
1 1
1—— 1 14+ —
d1 +dl
vJo’ 1 1 1 2
B d> do ’
1 2 1 4
1+— 1-= 1—-———
+d1 d> dy dp
di—1
0 0
dy

di n—1
o= 1 0
d—1 did>
> n—1 di+1 0
V' dido dq
Rescalingv1 by +/d1/(d1 — 1)/(n — 1)/d1d> andv; by /d1/(d1 — 1), the equations are
now

2(d1 — 1)

7= A (3.2)
75 = 22(2v1 + 2v2), (3.3)
2d1+1
73=123 <4v1 + va) ; (3.4)
di
1-n
el NP S 3.5
U= G g, 2T (3.5)

di di+1
H= 3. 3.6
vh 11+(d1_1>zz+<dl_1)23 (3.6)

The Hamiltonian constraint is

—do(d1—-1) , d—1
n—1 vt dq

)v%—z1—Z2—Z3=0, 3.7)

and the additional constraint is
23 = k12123, (3.8)

wherek; = A%/A]_Ag, which is negative becaust, A, are positive andi is negative.
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In Case (iv) we have: = 2, and we will assume that > 2. Then

di—1 do
. d  do—1 <_1 2 )
U = ) V= b
di+1 dp—2 2 -1
di—2 do+1
1 1 2
1-— 1 14+ — 1-—
di d1 d1
1 2 1
1 1- 7% 1- % 1+ =
0]0T _ 2 2 2 ’
14 1 1 2 1 4 2 n 2
di do d d> di  dz
2 1+ 1+ —+ 2 v 1
di do d do di  dr
d —
0 1-1 950
dx
n—1
/ 1 0 0
o \/ dq didy
di—1 -1 di+1
1 2 n 1+ 0 0
did> d1
_n— 1 d1-2 0 0
dido d1
Rescalingy; as above the equations become
, 2d1—1)
71 = ———21V2,
d1

75 = 22(2v1 + 2v),

2(d1+1
3=123 <4v1+(1—)v2>,

di
2(d1— 2
zﬁ=z4<—2v1+%v2>,
1
1-—n
/—— J—
Ul—dz(dl_l)(zz—i-Zzs 24),

, di di+1 dp—2
vy =21+ -1 22+ a1 3+ 41 24.

21

(3.9)
(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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The Hamiltonian constraint is

_%vi—i—(%) v%—Zl_ZZ—Z3—Z4=0, (3.15)
and the additional constraints are

Z% = K12173, (3.16)

Z% = K222%4, (3.17)

wherex1 = A3/A1Az andi = A2/A2A4.

Remark 3.1. Our equations have polynomial right-hand side with only quadratic non-
linearities. A majorisation argument (for example along the lines of thi] Jrshows that
formal series solutions to the equations around a singularity will in fact converge on a
punctured disc around the singularity.

4. Leadingterms

Let us consider the generic case (iii). We shall first find the possible leading terms of a
Painlevé expansion. We put

Zi:a(i)smi_k..., Ul-:ﬂ(i)sni_{_....

(a) First suppose that; = 0. Now(3.2)implies thatn, > —1.

If ma # 0themq = —1from(3.3), soequations (3.2)—(3.4howthatm, mo, m3) =
BP0, 2, 4). Now (3.5)forcesp® < 0 soms is the leasin;, and nowm(3.5) and (3.6)
show thati1 = n5, a contradiction.

If ma = 0then(3.2)—(3.4)imply n1, n2 > —1 and hencenz = 0 also, and we have
no singularity.

(b) We can therefore assume that # 0 and henca, = —1 < nq from (3.2)—(3.4)

If n1 > —1then(my, ma, m3) = 2@ ((d1—1)/d1, 1, (d1+1)/dy). If B is positive
then allm; are positive an@3.5)gives a contradiction. |8 is negative thems is the
leastm; and so(3.5) and (3.6forcen; = ny, a contradiction.

(c) We now consider the cagg = n, = —1. Egs. (3.2)—(3.45how that

2(d1—-1) ,3(2)

mi d1
my | = 2D 4 2@
m3
4p0 4 2t D g
dy

Note that all then; are distinct unlesg® + 418 = 0, when they are all equal.
If mj is the least of then;, (3.5) and (3.6)shows thati, < n3, an immediate
contradiction.
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If m is least, therf3.5) and (3.6)mply

2 -1
D @y _ ¢ n —d
B, ) d1_1< o 1>.

Substituting this into our expressions fay we find after some simplifying that

1
m1 1
mo | = —2a@ - E ,
2
m3 1_2
dp

contradicting the assumption thap is least. ' '
If m3 is least then, as above, we y85) and (3.6)o expres$s” in terms ofa®:

® (2m-1
o n
(/3‘1),;3(2))=d1_1< = ,—<d1+1>).
We obtain the following expression for;:
1
1 —
+d1
m1 2
my | = —2a® 1—-—
dz
m3
1 4
di  d»

As we are takingnz < m1, m» we needx®® < 0. Egs. (3.5) and (3.6)mply that
m3 = —2,S0

o® = 1 ’
1—(1/d1) — (4/d>)
and
4d,
d .
2= 4 —1

(d) The last case to consider is whg® + d18Y = 0 and hence all the:; are equal (in
fact they equal BV (1 — dy)).
There are two possibilities froif8.5) and (3.6)

Eithermi = —2and
Ww__ "1 @3 @__w_(_ 4\ o (“atl) g
B @+ 2a9), p? = —a (dl_l (A1) 40,

orm; < —2 and the linear combinations ef? in the preceding equations are zero.
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In the latter case we find that? = «® = —(1/2)a® and the constraint now gives a
contradiction.
In the former case we obtain, using the equatieps= —2 andg® + d; 81 = 0,

1 d1 d1
@ _ @ _ _ @ _ 0
Fr=a—1 P a1 YTt T
a@ = —2¢® 4 —dz .
-1
Imposing the constrair{B.8) now gives the equation
di + 4d d2 \?
(k1 - H@2 4 (DAY o (2_) _o (4.1)
n—1 n—1

Recall thatk; is negative, in particular does not equal to 4, and so we have a genuine
quadratic equation faz®. Let us now introduce a variabteby the relation

A
<2 + A—21> ((n —Da® + dy) = 2d1 + do.
1

Indeed,t is just the asymptotic value of2/f2 (cf. (9.1) and (9.2), which is given by
A10® /Ao, Under the transformation from® to z, the quadratie@quation (4.1)e-
comes a quadratic equationirwhich is precisely the Einstein condition f6f-invariant
metrics on the principal orbt /K.

We summarise our results in the following theorem.

Theorem 4.1. The possible leading terms for Ca@) are as follows
() If d> < 4d1/(d1 — 1) we can have

1+ !
m1 d
2d1d> 2 ni -1
m2 | =————">""7— 1-— , = ,
" 4dy — do(dy — 1) d> no -1
: Ady — dp(dy — 1)
—d1d>
oD
D e
S B
3 4d; — da(d1 — 1)
o = ,
B 2n=D e
5@ da(dy — 1)
di+1\
- — )
di—1
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where the constrain3.8) becomes the relation

@@= addz )
4dy — da(d1 — 1)
(I In all cases we can have
d1
o+ n—1
my _92 a® —2a® 4 d>
mo -2 a@ n—1
m3|l=|-2], a® | = oa® ,
ni -1 pb 1
no -1 /3(2) d—1
—dq
d—1

wherea® is a root of

di + 4d d \?
(ky — A2 4 (LT 2 LAy, 2 =0.
n—1 n—1

Each real rootr®, necessarily negative, corresponds tGdnvariant Einstein metric
onG/K of volumel.

Remark 4.2. Itis interesting to observe that if the inequality in the condition for Case (1)
to arise is replaced by theguality

T d -1

dp

we obtain the condition under which conserved quantities were found for double warped
product metrics iff4]. These warped product metrics correspond of course to Case (i) of
Section 3rather than Case (iii) which we are analysing here.

Remark 4.3. The leading terms in (ll) are expected by a priori consideration wheki
admits aG-invariant Einstein metric with positive constant because the metric cone over
it is Ricci-flat. Conversely, the asymptotic behaviour discussegeiction Sassociates the
leading terms with aG-invariant Einstein metric oitz/ K. Note also that in (I) we have
m1,m2 > 0 so onlyzs, v1, v2 blow up, whereas in (Il) all the variables blow up. See
Section %or more discussion of the asymptotic geometric behaviour of the leading terms.

5. Resonances

The next step is to compute the resonances for each set of possible leading terms.
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We substitute

o
=Y algnetio),
j=0

o
v = Z 133’) s~HU/O)

j=0
where Q is some integer to be determined later, into the equations. In the notation of
the previous sectiony® = o, g9 = g{. Equating powers, we obtain the following
recursion relations (valid fof # 0):

e Case ()
J 0 0 0 Ma(b
0 d° o
. o
0 é 0 ~2a@ ~2a? )
[/’
. J
0 O J _4a® _Ma@) ©)
0 0 d1 0 a;
2(n—1 ' @
0o o 2=b J 0 Bj
(d—Dd> Q0 g2
di+1 j /
0 0 - 0 L1
di—1 0
2dy — 1) 122
1= Z D 22
— 2% B
R
i1 (2, o1 2
2y o B+ B
_ i1 3 [0 , 2d1+1) 2
= Z{:l ai (4’311 + d—lﬂjfi (51)
1—-n ()[(2)
(d1 — Ddy J—Q(m2t+2)
&) a @
*j=0mi+2) T % 0mat2)
e Case (Il
J 2d1—-1 @
E 0 O O —d—ao
, ! o
0 s 0 —20@ 2@ L
0 . o
0 0 J —4a® 24D o NE)
0 d1 J
0 n—1 2m—1) 0 ,3;”
(d1—Dd2  (d1—Dd2 Q B2
—d1 (dl + 1) 0 J ’
di—1 di—1 0
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i—1
2(d1 — 1) % @ ,©
i—1
B 25 o B+ B 62

-1 (3 y , 2d1+1) 2
e e
1
0

0

Notice thatQ (m1 + 2) = 2Q(m2 + 2) in Case (I).

Inthe above recursions we fet= j/ Q and denote the coefficient matrix on the left-hand
side byZ(R). The resonances correspond to the steps of the recursion at which free param-
eters enter. More precisely, they are (o4 0) the values oR = j/Q for which Z(R) is
non-invertible. To compute the resonances, let us therefore replace the right-hand side of the
recursion by zero and see when there is a non-trivial solution to the equatym = 0.

In Case (I) we can use the first three equations to elimia:a({i)teand we are left with

81—n) 41-n)d1+1)

@ ()]
rr—1 (7 ) —o@ | 21— ) dida(d1—1) B; (5.3)
p? | 4@+ 2@+D? pP
di—1 di(dr— 1)

The matrix on the right (including thegf) factor) clearly has determinant zero. Moreover,
after some calculation we find its trace to be

1 4
) (1 1 _) o® =2 (5.4)

so the matrix has eigenvalues 0 and 2. The resonances are therefore theRogts bf = 0
or R(R—1) = 2, thatis—1,0, 1, 2. (Eq. (5.1)is not valid for R = 0 but zero is still a
resonance because the leading terms contain a free parameter.)

In Case (II) we proceed similarly and find that the resonances are given by the roots of
R(R — 1) = X, wherex is an eigenvalue of

1-n 2 &) 1-n @ di+ly @
—————— (20§ + 8a)) — {20y + 4 o
da(dy — 1) ° 0 da(dy — 1) \"° d )°
2 di—1 2d 2(d1+1)?% 4
d 2 2(d 1 3) 2 1 @ 1 2 (©))
7611 — l( 10y + 2(dy + Doy ) 7031 ag’ + 7611 —1 ag + 7611(611 — 1)0‘0

Using the formulae o heorem 4.Xor ag) we can simplify this matrix to

2 [
1—a T ma—an™ 1—di " dido(1—dyp)0
2 dldz 4 a(B) 2d2 + 2 + 4 a(3)
1—-di \1—n di—-1°% @A—-dpl-n) di(dr—1) ©
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Clearly, 2 is an eigenvalue of this matrix, while from computing the trace we see the other
eigenvalue is 2(1 — n) — (4n/d1d2)ag3).

Theorem 5.1. The resonances in the Painlevé analysis of the sy&e2h-(3.6)with con-
straint(3.8) are as follows

Case(l) R=-1,0,1, 2,
Case(ll) R = —1, 2 and the(non-zerg roots of

2 _ 4n Dt(3)
0>
1-n did

R(R—1) =

Whereosz’) is given by(4.1).

Remark 5.2. The appearance & = —1 as aresonance is typical for autonomous systems
of differential equations, and is associated to the degree of freedom we have in translating
the independent variable We shall see irsection 6that the degree of freedom from the
resonance ak = 2 is fixed by the Hamiltonian constraint.

Remark 5.3. In Case (II), anecessarygondition for there to be a rational resonance other
than—1, 2 is thatozés) is rational. From(4.1) this condition is

Jid? + Bardidz + drdd € Q. (5.5)

Remark 5.4. Denoting 2(1 — n) — (4n/dld2)oz§)3) by 6, we have the following table
relating the value ob to the values of the root®; < Ry of R(R — 1) = 6. Of course
Ri+Ry=1:
0<—-% RiLReC-R, 6=-% Ri=Ry=3
—3<0<0, O<Ri<Ry<1l  6=0 Ri=0R =1
0<6<?2 —-1<Ri<0<l<Rr<?2 6=2, Ri=-1Ry=2,
0>2, Ri<-1<2<Ro

Remark 5.5. One can easily check that= 0 if and only if the quadratic equation faff)
has arepeated root (that is, if and onlgif K admits auniqueG-invariant Einstein metric).
In this situation the Painlevé expansion for Case (ll) has resonatteks 2.

6. Compatibility conditions

At each resonance we must check that the recursion is solvable. Let us first consider Case
.

Observe first fronTheorem 4.thatm1 is positive,m, is non-negative ang, vanishes
if and only if d; = 2. For the steps in the recursion up to and including the top resonance
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R = 2, itfollows that, except wheily = 2, the terms in the last two entries of the right-hand
side of(5.1)are zero.

For j < Q, sinceZ is invertible, we see thai;’), ,8;‘) and the right-hand side ¢5.1),
are all zero. AR = 1, thatisj = Q, solving the recursion is just finding the kernelLf
So we have

oD

%9 41— dp)af’
g 2(1 — dyal?
ag | = 0 : (6.1)
ﬁ(l) di+1
B2 —2d;

whereu is a free parameter.
At R = 2, that isj = 20, the kernel ofZ" is spanned by0, 0, 1, 4a(3) (2(dy +
1)/dl)oz(()3))T so if d1 # 2 the compatibility condition becomes

20-1

2 d +l
> o (a5 + X243 ) o 62

i=1

Note that this is true even if; = 2 because in this case the terms in the last two places
ontheright-hand side ¢5.1)arec; = [(1—n)/(d1—1)d2] andoz = (dl/(dl—l))a(z)
respectively, and it is easy to check thatdf = 2 then &1 + (2(d1 + 1)/d1)
o =0.

Now we have already observed that fox0j < Q the quantities)c(f) andﬂ(.i) are zero.
It follows that the only term which contributes to the sunm(#i2) is the one withi = Q,
and this is zero because frdr&l)a(Qs) is zero. Hence the recursion is solvablg at 20
and we are done.

The free parameter entering the Painlevé expansion at the top resonance is just the freedom
to add an element of kef(2) to (a(l) .. ﬂ(z)) We can take

20°
ag s |\ 5 — 1 ag s — ag s
di (d1+ Dd> dz(d1+ 1) d1
2(n—1) 1)T
(d1+ Dyda’

as a generator of the kernel. Since the Hamiltonian is constant along a solutrs of
(3.2)—(3.6) the value of the constant in the present situation is determined by the constant
term of the expansion of the Hamiltonian in powers adind this equals

2(d1+1) (3)) @D 42 O

3 @D L2
<o,o, 1, —dagy’, — 0 %30 %0 %0 Bag: Bag) (6.3)
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plus terms with subscripts< 20Q. The scalar product of the left-hand vecto(6f3) with
our generator of the kernel &f(2) is

B @, ,
3, (dl +1 4n-1 ) R ) (do(dy — 1) — 4d1) # 0

di (di+VDdy)  dida(di+ 1)

by assumption, so the free parameter at the top resonance is fixed by the Hamiltonian
constraint. Finally, we observe that Remark 2.1z§/zlz3 is a conserved quantity of our
equations, and that its value on our Painlevé series solution is determined by the leading
terms. Since we have already chosen the coefficients in the leading terms to satisfy the
constraint, it follows thaf3.8) holds. We have now proved the following theorem.

Theorem 6.1. If do < 4dy/(d1 — 1) then family(l) gives rise to a convergent Painlevé
expansion satisfying all the constraints and depending on the full number of parameters

Remark 6.2. One can check that for all the valuesdf d> satisfying the inequality of
Theorem 6.1lexcept the cas® = 3, d1 # 3, we haven; integral. As the resonancé&sare
always integral, we can therefore taRe= 1 except in this special case. So our expansions
are actually meromorphic in(rather than a fractional power gf unlessd, = 3, dy # 3.

For family (1) we can prove the following result at the top resonance.

Lemma 6.3. The recursion in familyll) at the top resonance is solvable provided the
earlier recursions are solvable. Moreovehe free parameter at the top resonance is fixed
by the Hamiltonian constraint

Proof. One can easily verify thatthe kernelo§2) T is spanned byd, 1, 1, 2d>/(n—1), 2)7.
The compatibility condition at the top resonarke= 2 (that is,j = 2Q) is therefore

20-1 20-1

2(d1— 1) QX: «Dp? Lo Z «@ (D _ 4+ pD

dy ~ i 20—i part 20—i 20—i
20-1

+Z (3)(4'3;21 2(d1+1)/6(2) )_

We can write this as

20-1
2 ) (@ +20)p5
i=1
20-1
2(d1—1 d di+1
n (d1—-1) Z (a(1)+ 1 @ atl (3)) @ _g

dl prt i d 1 o; d 1 Q; 20—-i —
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and hence, using the fourth and fifth rows of the recur§ioB), as

[ 2,2
(-

Changing the index tb = 2Q — i we see that both terms on the left-hand side now vanish.
The kernel ofZ(2) is generated by(1 — dy)al”, (1—d1)al?, (1—di)ay’, 1, —dy). On
the other hand, the constant term in the Ham|lt0n|an is

—2dp O @ O g0 @
<_1,_1,_1,n_1 ) ( ZQ’ 2Qs 2Qs ,32Q1,3 )

20-1 20-1

2(d1 — Dd> ] @) o) Z(dl )
1-n 2. ( Q ) P Pag-i d1 2

i=1 i=1

plus terms with subscriptg < 2Q. The inner product of the vector on the left with the
generator of keiZ(2)) is 3(d1 — 1)n/(n — 1) # 0, proving our last claim. O

Remark 6.4. We can also observe that in Case (Il) compatibility always holds at the step
J1 corresponding to the first positive resonance, becaf,iéaﬁg.’) and the right-hand side
of (5.2)are zero forj < ji. o

However, if the resonance®;, R, other than—1, 2 satisfy O< R1 < R2 < 2 it may
happen that the compatibility condition A% is not satisfied. InSection 7Awe shall see an
example G/K = SO(5)/U(2)) of this kind. In this example the compatibility condition
at R, only holds if the free parameter &t is set to zero, so we do not obtain a Painlevé
expansion depending on the full number of parameters.

The following result gives a sufficient condition for all compatibility conditions to hold.

Lemma6.5. If
1 2 4n 3) 2

< 0
4 1—n did> 9

then all compatibility conditions hold and we have a Painlevé expansion of{typee-
pending on the full number of parameters

Proof. We observed above that.’), /63’) are zero forj < jj. It follows that the right-hand

side of (5.2) is still zero for j < 2j1, so compatibility in fact holds foj < 2j1. So

if we have 0 < R; < Rz < min(2R1, 2) then all compatibility conditions hold. In
the notation ofRemark 5.4 we see thatR;, R, satisfy these inequalities if and only
if —(1/4) <06 < 2/9. O

Remark 6.6. As remarked earl|eu(3) is negative when real. It follows thatrecessary
(but not sufficient) condition for the hypothesislgdmma 6.5to hold is that: < 10. In

Section 7we shall see an exampl& (K = Sp(2)Sp(1)/Sp(L)Sp(1) andn = 7), where
Lemma 6.5applies. On the other hand, the exam@lgk = SO(5)/U(2) below shows
thatrn < 10 is notsufficientfor either the hypothesis or the conclusionla&fmma 6.5
to hold.
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7. Examples

Example 7.1 (G/K = SO(5)/U(2) ~ CP%). This is the total space of the twistor space
of §* ~ SO(5)/SO(4) (as a self-dual manifold), séy = 2 andd> = 4. The constant;
is —36. Note that S@)/U(2) admits exactly two S(®)-invariant Einstein metrics: the
Fubini—Study metric and the Einstein metric induced by the Killing form ofs3Qwhich
was first found irf11].

As d> < 4d1/(d1 — 1) the expansion (1) exists, wittwny, m2, m3) = (6, 2, —2).

For (Il) we have: (a)xé3) = —(1/5) or (b) cxés) = —(2/25). By Theorem 5.1he reso-
nances are:

(ll) R = —1, 2 and the two irrational roots d¥(R — 1) = (1/5);
(Ilb) R =—1,1/5,4/5, 2.

After imposing the Hamiltonian constraint, the Painlevé expansion from (lla) depends only
on one free parameter, and represents, up to translatigthef cone over the Fubini—Study
metric.

For (IIb), we obtain a Painlevé expansion in powers'6f. The compatibility condition at
R = 1/5 holds automatically, but computations by hand or MAPLE show that compatibility
atR = 4/5 forces the free parameterRt= 1/5 to be zero. The upshot is that the Ricci-flat
equations admit a 2-parameter Painlevé expansion, where one free parameter is translation
of s and the other comes from the resonan¢®. 4

One can check that this family in fact represents the metriag,ofiolonomy found in
[3,7]. To do this, we first show that the condition for a cohomogeneity Gpanetric is
given by

6v 2
2”% = —25¢3, (?l + v2> = 271,

and the constraint equatitzé = —36z1z3. These equations cut out a surface in the space of
thez; andv;. One can then check that the Hamiltonian vector field is tangent to this surface.
Usingv1 andvy to parameterise this surface, we obtain the following quadratic subsystem
of (3.2)—(3.6)

vy = v1(2v1 + %’Uz), vy, = —gvl(Zvl + ) + %v%

Next, we show that this subsystem has a 2-parameter family of Painlevé expansions with
leading terms fop; exactly the same those foy in (IIb). Furthermore, the resonances are
now at—1 and 4/5. Expressing thg in terms ofv; we recover the 2-parameter family of
Painlevé expansions we obtained in (Ilb), and so they indeed come from
Go-metrics.

This orbit type has a higher dimensional generalisation as follows.

Example7.2(G/K = Spim+1)/(Sp(m)U(1)) ~ CP?"+1, the twistor space dP"). Now
d1 = 2,do = 4m andk1 = —4m(m + 2)2. There are again two invariant Einstein metrics
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on G/K, the Fubini—Study metric and the Ziller metric, neither of which are induced by
the Killing form whenm > 1.

Form = 1 this is just the previous example.
Form > 1 the inequalitylo < 4d1/(d1 — 1) no longer holds, so expansions of type (1)
no longer exist. (Note that equality holds precisely wheg: 2.)

For family (1) we find that the possibilities fargg) are:
@) «f = —(@m/(m + 1)(4m + 1)), or
() ol = —@m/(m? + 3m + 1)(4m + 1)),

corresponding to the Fubini—Study metric 6K and the Ziller Einstein metric, respec-
tively.

We find fromTheorem 5.%hat the conditions for there to be rational resonances other
than—1, 2 are, respectively:

(1a) (4m? + 13m + 1)(m + 1)(4m + 1) is a perfect square,
(Ilb) (4m® + 5m? — m + 1)(m? + 3m + 1)(4m + 1) is a perfect square.

For (lla), let us writep(m), p(m), ¥(m) for the factors 42+ 13n + 1, m + 1,4m + 1,
respectivelym > 1). Itis straightforward to show by repeated long division of polynomials
thatg(m), ¥ (m) are always coprime, while the only common prime factorg @t), p(m)
(respectively,o(m), ¥(m)) are 2 (respectively, 3). b(m)p(m)y(m) is a perfect square,
therefore, we can write

2Na+1_ . 2Natb

i 2N-
p(m) =2/ pf e pZNa - p(m) = 23 pIiet e pt,

vim) =3Pl
wherej + k andg + ¢ are even.

Now (2m + 2)2 < ¢(m) < (2m + 4)2, and we see that(m) is a square only ifn = 8
(wheng(m) = (2m + 3)2). In this casep(m)p(m)y(m) is not a perfect square, so we may
assume from now on thgtand hence is odd. Moreover, #(m) = 3 modulo 4 so is not
a square, so we deduce tlghnd hence are even. It follows thaiy(m) = 4m + 1 and
2p(m) = 2m + 2 are squares. Working modulo 8, and noting that squares are congruent to
0, 1 or 4 modulo 8, we see that this is impossible.

For (IIb) similar arguments show that

A4m® +5m° —m + 1, tam + 1), t(m?+3m+1)
must all be squares. In particular, we must have an integral point on the elliptic curve
y2=4m3+5m2—m+1.

Siegel’s theorem shows that there can only be finitely many sudkloreover, the pro-
gram Ratpoints of Elkies, Stahlke and Stoll shows that the only integral points)
with 1 < m < 10° are (1, 3) and (32, 369), and for the lattghn + 1)/5 is not
integral.
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To summarise, ifz = 1 (i.e.M has dimension 7) we have non-trivial Painlevé expansions
of types (1) and (llb). Ifm > 1 then there is no expansion of type (1) and, for the range of
m that we have checked (up to®o type (IIb) expansion either (we conjecture that there
is no (lIb) expansion for any: > 1). There is never a non-trivial expansion with leading
term (lla).

Example 7.3 (G/K = G2/(SU(2)SO(2))). This is the twistor space of the quaternionic
symmetric spac&2/SO4). Now d; = 2,d2 = 8 andxy; = —128. These are the same
values as in case = 2 of Example 7.2s0 we deduce that there are no rational resonances
other than—1, 2 and hence only a trivial Painlevé expansion.

Example7.4(G/K = (Spim+1)Sp(1))/(Spim) ASp(1)) ~ $**+3). Now Spim)ASp(1)
CZSp(m)Sp(l)Sp(l) and saly = 3, d2 = 4m. Also we may compute; = —(32/9)m(m +
2)°.

Note that the inequality, < 4d1/(d1 — 1) needed for family (I) to exist is satisfied only
for m = 1. In this case we haveni, m», m3) = (8, 3, —2) andTheorem 6.1gives a full
Painlevé family.

For family (11), we find from(4.1) that the two possible values faég) are:

(a) aé?’) = —3m/(2m + 1)%, which corresponds to the constant curvature metric;

(b) a((f’) = —3m/(2m + 1)(4m? + 14m + 9), which corresponds to the Jensen squashed
metric[8].

By Theorem 5.%he resonances are:

(lla) R=—-1,-1/2m +1), 2m +2)/2m + 1), 2;
(Ilb) R = —1,2andtheroots aR(R—1) = —(4m?+10m+6)/(2m+1)(4m?+14m+9).

In (lla) since compatibility automatically holds at the first positive resonance, it follows
from Lemma 6.3we get a 2-parameter family of Painlevé expansions for the Ricci-flat
equations.

In Case (llb) we have four rational resonances if

(8m®> + 16m? — 8m — 15)(2m + 1)(4m? + 14m + 9) (7.1)

is a perfect square; otherwisel, 2 are the only rational resonances, in which case by
Lemma 6.3the Painlevé expansion is just the cone over the Jensen metric, modulo the
position of the singularity.

Using similar methods to those Example 7.2 we see that i{7.1) is a square, then
8m3 4 16m? — 8m — 15, (2m 4 1)/3 and(4m? + 14m + 9)/3 are all squares. In particular,
the elliptic curvey? = 8m3+ 16m2 — 8m — 15 will have integral points. As before, Siegel’s
theorem tells us there are only finitely many such points. On the other hand, Ratpoints
shows that the only integral points:, y) with 1 < m < 10 are (1, 1), (8, 71), (20, 265)
and (68, 1609). The only one of these wh&e + 1)/3 equals a square is = 1. Hence
for 1 < m < 10P, onlym = 1 satisfies our Diophantine condition.

In the special case = 1 of (IIb), the resonances are= —1, 4/9, 5/9, 2. Thus we can
take Q = 9 so positive resonances occurjat 4, 5, 18. NowLemma 6.5ells us that all



A. Dancer, M.Y. Wang/ Journal of Geometry and Physics 48 (2003) 12-43 35

the compatibility conditions hold. Hence we get a full 3-parameter Painlevé family for the
Ricci-flat equations.

Using arguments similar to those at the endegmple 7.1one can show that there is
a 2-parameter subfamily of the above 3-parameter Painlevé family which corresponds to
the (local) metrics with SpifY) holonomy found in3,7]. This 2-parameter subfamily is
obtained by setting the free parameter at the first positive resonance to be 0. We note that
the Spin(7) condition is given here by the equations

8v 2
M2 = —27z3, (?1 + 2v2> = 621,

and the constraint equatia8 = —32z1z3.

To summarise, ifn = 1 (i.e. M is eight-dimensional) we have non-trivial Painlevé expan-
sions of types (1)—(llb), with those of types () and (llb) depending on the full number of
parameters. Ifz > 1 there is no expansion of type (I) and, at least foe In < 108, no
type (llb) expansion either (we conjecture that there is no (IIb) expansion foranyl).
Type (lla) expansion exists for all.

Example 7.5. Take G/K = SO2m)/(SOm)U(1)), where SQn)U(1) c U(m) C
SO(2m) andm > 3. Since

di=3m+2m—1,  do=mm-1),

we havel, > 4d1/(dy — 1), and so Painlevé expansions of type (I) never occur. From Wang
and Ziller10[10, p. 189there is naG-invariant Einstein metric o /K for m > 3, while
for m = 3 there is a unique such metric. So far> 3 we obtain examples of principal
orbits for which the systert8.2)—(3.6)with constraint¢3.7) and (3.8has no (real) Painlevé
expansions.

On the other hand, when = 3, Eq. (4.1)has the unique rootéa = —(3/22), and
as inRemark 5.8he resonances arel, 1, 2. We therefore obtain a 2-parameter Painlevé
expansion of type (ll) for the Ricci-flat equations.

8. Thecase of a primitive principal orbit

Let us now consider Case (iv) 8kction 3that is, whert is a maximal AdK)-invariant
subalgebra of;. Recall that inSection 3we have defined constants = A%/A1A3 and
k2 = A2/ A2A4 which are negative.

Theorem 8.1. The possible leading terms are as follows

(1a) If do(d1 — 1) < 4dy we can have
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1+ 1
d1
my 1-2
my | 2d1d> dy
m3 | 4dy —do(dy — 1) | 4dy—da(dr— 1)
ma —d1d>
14 24+ =
+ i + &
D
a® “(2)
o
a@ B —dydy
l=] —=="= 1,
* o Ady — d2(d1 — 1)
o
@
2(1—n)
pYY didy da(d1 — 1)
B ) " ady—dodi -1 | di+1 |’
di—1
where
k10Da® = D)2 a@a@ = (D)2,
(Ib) If di(d> — 1) < 4dy andd; # 2 we can have
2
dx
1
my | 2d1d> dp
m3 | 4dy —di(do — 1 2 2
e 2 —di(d2 = 1) L+ =+ =
1 d2
4dy — di(do — 1)
—didy
SO a®
@ oa®@
o
o | = o® ,
o
@ —hdz
o I
4dy — di1(do — 1)
n—1
pYY did> da(dy — 1)
B?) T Adp—didr—1) | d1-2
di—1

with the same constraint relations faf? as in(la).
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(Ic) If dy = 2we can have

mq 0

my | 2 nt\ (-1

ms| | 4 | (nz) - ( n ) ’

ma -2

L o@D

«®@ a® B 1

@ =] @ | ( (2)) - ( ) ) ’

o® —d2 p p
dr»+1

wheren, = 0 or 1 and the same constraint relations fef” as in(la) hold. Also, we
havep® = oY whenn, = 1 and @ is arbitrary whenn, = 0.
(I In all cases we can have

my —2 a®
my -2 a® e
m3 -2 a® 1 n+do
= | _= D 2 _~-T%
ma o | o® 3 (a + 200 pa— ) )
ni -1 a® 1 n—+dp
_2 2™ 4 4@ _
na -1 3 ( S |
1
VN _ | a1
g2 | = —ap |’
di—1

wherea and«® are uniquely determined by= A1¢® /A>¢Y which must be a
solution of the Einstein equation for G-invariant metrics on G/K

Outline of proof. Since the required analysis is very similar to that for Case (iii), we will
only indicate the differences. First suppose that= 0. As beforen, > —1 and we may
then conclude that; = —1. However, this time we hav@ro, m3, ma) = (2, 4, —2)% and
we obtain a contradiction as before except wji€h > 0 andd; = 2. In this situation, the
equations imply thatis = —2, B = 1anda™® = —d»/(d2+1). Hencens = 2, m3 = 4
and we are in Case (Ic). The rest of the conclusions come from exankigin@.14 further.

So ifdy # 2, thenmy # 0 andny = np = —1 as in Case (iii). We again conclude that
m1, mp, m3, my are either all different or they are all equal. Case (Ia) corresponds to the
situation whenng is the smallest among the; and Case (Ib) corresponds to the situation
whenmy is smallest. The Diophantine inequalities result from similar considerations as in
Section 4 Notice that in Case (Ihj; cannot be 2 because otherwise there would he an
power on the left-hand side ¢8.14)which is not balanced by any term on the right-hand
side. Thus we see that Case (Ic) is really the complement of Case (Ib).
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When all them; are equal, there are again 2 subcases, as in Case (iii). kither—2,
which gives Case (ll), or else; < —2.

In the former case, one easily checks &t anda® can be expressed in termsaf
anda® as indicated above, while the latter constants must satisfy the system

(2)\2
@)? + 20Pa@ 4+ @) = (n + dz) a®,

K1 n—1
DH\2

(01(2))2 +2aW@ 4 3@7) = (n + dl) @,
K2 n—1

If we divide these equations lig D)2, we see immediately that they say th&® and hence
«@ are determined by the ratig® /«D, which by (9.1) and (9.2)s just the asymptotic
value ofAzflz/Alfzz. As in Case (iii), the above system corresponds to a cubic equation in
7, which is precisely the Einstein condition f@-invariant metrics on the principal orbit
G/K.

The latter case can occur only if

(9 — k162)% = o (i — 3) (k2 — 3)

holds. Then we must have; = —2(d1 — )Y < -2, 8@ = —d1fD , ny = np = —1
and

P +26@ 3@ =0, 20V 4@ 4 3@ =0,
9-— K1K2)O[(l) — Kk2(2K1 — 6)01(2) =0.

We will refer to this last case as Case (lll). However, we have not listed this case in the
statement offheorem 8.Ibecause we shall show later that this set of leading terms does
not give rise to convergent Painlevé expansions.

Remark 8.2. Note the appearance of the conditiin< 4d1/(d1 — 1) (and the correspond-
ing condition withdy, d> interchanged) as in Case (iii). In particuléfy, d») satisfies both
conditions iffd1 +dy» < 8,0rdy = 1,0rdy, = 1, or(d1, d2) = (7,2) or (2, 7).

Theorem 8.3. The resonances in the Painlevé analysis of the sy&e3-(3.14subjected
to the constraint$3.16)and(3.17)are as follows

Caseqla)and(lb) R =-1,0,1, 2;
Case(lc) R = —1, 0, 2,where—1 has multiplicity2 whenn, = 1 and multiplic-
ity 1 otherwise and0 has multiplicityl whenn, = 1 and multiplicity

2 otherwise
Case(ll) R = —1, 2 and the roots of the equation
2 4n
R(R—1) = — ——(@® +a®), 8.1
R=1 = 7= = @ +a®) (8.1)

wherea® anda® are given inTheorem 8.41).
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The proof of this theorem proceeds in a similar fashion &iction 5We will summarise
below some useful information from the proof and discuss the resonance analysis for the
undisplayed set (Ill) of possible leading termsTineorem 8.1

For Case (la), keéZ(R = 1)) is spanned by—4a®, —20? 0, —6a®, (d1 +1)/(d1 —

1), —(2d1/(d1 — 1)), ker(Z(R = 2)) is spanned by

2
<d2(d1 + 1) (d1— 1)0:(1), <d2(d1 +1 2) o, <d2(dl +D° 4) N

(n —1dq n—1 (n—1)d1
<d2(d1 tDd -2 2) y@ o d2ldit 1))
(n — Ddx 2T )

ker(Z(R = 2)") is spanned by0, 0, (4d1 — da(d1 — 1))/2d>, 0, —2d1, —(d1 + 1)). Asin
Remark 6.2we see that we can choogkto be 1 except whet, = 3, d; # 3, in which
case we can tak@ = d; + 3.

For Case (Ib), keZ(R = 1)) is spanned by2«®, 4¢@,6a®, 0, (d1 — 2)/(dr —
1),d1/(d1 — 1)), ker(Z(R = 2)) is spanned by

< <(d1 — 2)da(dy — 1>> oD, (M + 1) a®,

(n — Ddy n—1
<(d1 —dpda+1) 2) NE) ((dl — 2%y 1) N 2>d2>
(n—1dq "\ (n—Ddq T on-—1 ’

ker(Z(R = 2)T) is spanned by0, 0, 0, (4d> — d1(d2 — 1)) /2d>, d1, —(d1 — 2)). Again, we
can takeQ = 1 except wherl; = 3, d> # 3 in which case we can tak@ = d> + 3.

For Case (Ic), keiZ(R = 2)) is spanned by0, «@, 2o® —a«® | 1, 0), which is simply
the vector given in (Ib) witl; setto be 2. The kéZ (R = 2" is spanned by0, 0, 0, d> +
1, 2d», 0). We can seD to be 1 as well.

For Case (ll) kefZ(R = 2)) consists of vectors of the form

di—1 d 1
<<—1 ) 220, (41 + )@, (2;‘1 + ( Lt ) Ez) o,
d1 dy
di—2
<—§1 + <1d—1) §2> a?, ¢, §2> ,

where(¢1, 22)T lies in the null space of the matrix
1-n 1-—n

2 2n+didz 20 _ 24 dp dlldz
d—-1 n—1 1

di
Soke(Z(R = 2)) is two-dimensional if 2V 4+-2a¢@ = (2n+d1d>)/(n—1), and otherwise

is spanned bya®, «@ o® o®, —1/(dy — 1), d1/(dr — 1)). Similarly, ket Z(R = 2)T)
consists of vectors of the form

1—n 2(1—n)
((dl — Do, (d_) &1+ digo, ( y ) &1+ (di+ Do,
) )

-1
(—nd ) 1+ (d1— 282, &1, §2> ,
>
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where(¢1, £2)" liesinthe null space of the transpose of the matrix above. S@k&r= 2)T)
is two-dimensional if 21 + 2@ = (2n + d1d>)/(n — 1) and otherwise is spanned by
(1,1,1,1,2d2/(n — 1), 2).

In Case (lll), the recursion operatdi j/ Q) is given by the matrix

' di—1
L 0 0 0 0 -2 ( L ) a®
0 dr
0 é 0 0 — 2@ — 2@
0 0 S 0 _4g® o (Bt1) e
0 dx
j di—2
0 0 0 L 20 24 a®
0 d1
n—1 2n —1) —-n-=-1) 0
dp(dr—1) do(di—1)  do(d1i—1)
_l —dl _ dl + 1 _ dl - 2 O 0
di—1 di—1 di—1

The difference between this operator and that for Case (ll) is that the zef@ @atrix in
the lower right-hand corner is replaced Gy QO — 1) times the identity matrix. As a result
of this difference, in the present case, for gt 0, Z(j/ Q) has a one-dimensional kernel
spanned bya™, «@, @, o«@ j/20(1—dy), jd1/20(d1—1)). Likewise, ket Z(j/0)T)
isspanned byl, 1,1, 1,jd2/Q(n — 1), j/ Q).

Theorem 8.4. Consider the systel3.9)—(3.14)with the constraint$3.16)and (3.17)

1. For leading terms of typefla, b, c)all compatibility conditions hold. Moreovethe
Hamiltonian constrain{3.15)fixes the degree of freedom at the top resonance. Hence
we have convergent Painlevé expansions depending on the full number of pardB)eters
except in cas€lc) withno = 1, when we have a 2-parameter family instead. Morepver
the expansions are meromorphic ifrather than a fractional power of)y®xceptin case
(la) with dy = 3, d1 # 3 and in cas€lb) withd; = 3, d» # 3.

2. For leading terms of typ@l), if 20V + 20® £ (2n 4 d1d>)/(n — 1) and all earlier
compatibility conditions holdthen the compatibility condition at the top resonance
R = 2 holds as welland the Hamiltonian constrain{8.15)fixes the degree of freedom
at the top resonance

3. For leading terms of typéll), the compatibility conditions fail to hold all the way

The proofs for parts 1 and 2 are similar to those for the corresponding leading terms in
Case (iii). Below we will indicate the argument for part 3.

In writing out the recursion relations for leading terms of type (I1l) et 2(1—d1)ﬂél)
denote the common value of the exponemtsThen—m — 2 equalsjp/ Q for some positive
integer jo. We will show that the compatibility condition gt = jp cannot hold. The
right-hand side of the recursion relation at sjap
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ity (1) o 62,
1 dl

Z] 120(2) (/3(1) + /3(2) )

J—Jo
(- ().

In view of the expression of the generator of k&¢j/ Q) "), the compatibility condition at
j = jo becomes

o—1
di—1 2 @ d1 @ di+1 o) di—2 @)
0=2 S, == o= -
< % )Z(uk aog)o g =1)o g =1)%

k=1

ot - () ()

If compatibility breaks down befor¢ = jo then we are done. Otherwise, by the earlier
recursion, the first two sums are zero and we are reduced to the condition

oy’ + (n— DY =0,

which cannot hold since, from abm@éz) = —dlﬂél), andﬁ(()l) # 0 by assumption.

9. Asymptotics of the Painlevé solutions

Our Painlevé expansions give local solutions of the cohomogeneity one Ricci-flat equa-
tions, and the asymptotic behaviour near the movable singularity can be translated into cor-
responding behaviour of the Ricci-flat metrics. Recall that our mgteiods2+ fl(t)23|p1+
f2(t)?Blp,, where 2 = et and f2 = ef2.

It then follows that:

di/2(n—1) do/2(n—1)
dr = (2 2 ds,
A1 Ao

f 2 (1—dz)/(n—1) 22 dz/(n—1) ©.1)
1= Al Ao ’ '

and
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f2: 1 d1/(n=1) 22 (1-d1)/(n=1) ©.2)
2 Al A2 . .

For leading term behaviour of type (la), we may assumestka0 corresponds to= 0 and
we have ~ s#ditd2)/(4di—d2(d1=1D) (\We suppress multiplicative constants here and in what
follows.) Furthermore f1 ()2 ~ 1~(2d2/(4di+d2)) gnd f,(1)2 ~ 1/ (4d1td2) Therefore, as
tends to 0, the volume of the principal orbits tends to 0 even agstld@ections blow up.
Note that although the variables andz, do not blow up in this leading term behaviour,
one of the geometric variableg, in this case, does blow up.

For leading term behaviour of types (Ib) and (Ic), again we may assume thad
corresponds to = 0 and we have ~ s@1+4d2)/(4d2=d1)(d2=1) A|s0, f1(1)2 ~ 42/ (d1+4d2)
and fo(1)2 ~ ¢~ (21/(d1+442)) Hence agtends to 0, the volume of the principal orbits tends
to O, but this time the, directions blow up.

Finally, for leading term behaviour of type (1), we may assume thatO corresponds
tor = +oo and we have ~ s~ @=D) Furthermore f1(?2 ~ (n — 1)2(A1/a61))t2 and
F2(% ~ (n — D2(A2/a{?)i2. Henceg is asymptotic to the Ricci-flat metric cone Gy K
with a G-invariant Einstein metric, and so has Euclidean volume growth.

The above analysis applies to both Cases (iii) and (iv), as well as to Case (i), provided
that the particular leading term behaviour exists, because the transformation fromahe
f; depends only on the basie'?, w®} chosen and the leading term behaviour. Finally,
we observe that as a result of the Painlevé analysis in this paper @jdiifiollows that the
only Painlevé expansions among the two-summand case which exhibit a Taub-NUT-style
end behaviour occur when one of the irreducible summands is Abelian (i.e. Case (ii) of
Section 3.
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