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Abstract

We investigate the existence of Painlevé–Kovalevskaya expansions for various reductions to ordi-
nary differential equations of the Ricci-flat equations. We investigate links between such expansions
and metrics of exceptional holonomy.
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1. Introduction

One tool in the study of differential equations is to investigate the existence of families of
meromorphic solutions. This technique goes back to Kovalevskaya’s work on integrable tops
[9] and to Painlevé’s work on movable singularities of solutions to differential equations.
For more recent work on this subject, see, for example[1,2].

In this paper we shall investigate the existence of such meromorphic expansions for
the cohomogeneity one Ricci-flat Einstein equations when the isotropy representation of
the principal orbit consists of two inequivalent summands. Two rather special cases were
analysed in[6], including the situation of double warped product metrics. For these metrics,
we found that larger families of Painlevé expansions existed in the 10 and 11-dimensional
cases than in other dimensions. These were exactly the dimensions where, in some cases,
conserved quantities for the equations were found in[4].
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Some of the themes of the analysis in[6] recur in the current paper. We find that the
existence and size of families of such Painlevé expansions depend rather sensitively on the
choice of principal orbit. In particular, certain features (such as the existence of certain types
of Painlevé expansion) occur only if the dimension of one or both of the summands in the
isotropy representation is small.

As in [6], existence of a non-trivial family is often associated to the existence of a solution
to a Diophantine equation (such as the presence of an integral point on an elliptic curve),
and this may single out certain dimensions as special.

Finally, we find that Painlevé expansions are sometimes linked to the existence of a
subsystem of the Ricci-flat equations representing metrics of exceptional holonomy, cf.
Examples 7.1 and 7.4.

The layout of the paper is as follows. InSections 2 and 3we choose variables so as to
put the Einstein system into a form suitable for Painlevé analysis. InSection 4we begin
our study of the case when the principal orbitG/K has two distinct summands in its
isotropy representation andK is not maximal inG. We find the possible leading terms of a
Painlevé expansion (as in[6] we allow expansions which are meromorphic in a fractional
power of the independent variable). Next, inSection 5we substitute the expansion into the
equations and find the recursion relations that the coefficients must satisfy. We compute the
resonances, that is, the steps in the recursion at which free parameters may enter. These are
the steps at which the linear operator in the recursion fails to be invertible. Existence of
Painlevé expansions depending on a large number of parameters requires there to be many
rational resonances, and this often leads to Diophantine constraints on the parameters in
the equations. InSection 6we study the compatibility conditions for the recursion at the
resonances to be solvable.Section 7is devoted to examples. InSection 8we perform a
similar analysis for the case whenK is maximal inG. Lastly, we describe inSection 9the
asymptotic behaviour of the Ricci-flat metrics corresponding to our Painlevé expansions.

2. The Einstein equations and an associated quadratic system

We consider the Einstein equations for a cohomogeneity one metricḡwith principal orbit
G/K, where the isotropy representation ismonotypic; that is we have

g = k⊕ p1 ⊕ · · · ⊕ pr,
where the summandspi areinequivalentK-modules of real dimensiondi. The metric̄gmay
be written as dt2 + gt , where

gt = eq1(t)B|p1 ⊥ · · · ⊥ eqr(t)B|pr , (2.1)

andB is a background metric onG/K induced by some bi-invariant metric onG. We used
to denote the vector of dimensions(d1, . . . , dr), and letn = ∑r

i=1 di denote the dimension
of the principal orbit. The cohomogeneity one Einstein metric therefore lives on a space of
dimensionn+ 1.

As explained in[5] the Einstein equations Ric(ḡ) = Λḡ may be written as a Hamil-
tonian flow together with the constraintH = 0 on the cotangent space of the space of
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G-invariant metrics onG/K. Writing q = (q1, . . . , qr) andp = (p1, . . . , pr), wherepi
are the associated momentum variables, the Hamiltonian is

H = e−(1/2)d·qpJpT + e(1/2)d·q

(n− 1)Λ−

r+m∑
j=1

Aj ew
(j)·q


 . (2.2)

In the above,J is the symmetric matrix with entries

Jii = 1

n− 1
− 1

di
, Jij = 1

n− 1
for i 
= j,

and so it has one positive andr−1 negative eigenvalues. Furthermore, theAj are constants,

thew(j) are vectors inZr, and the term
∑r+m
j=1 Aj ew

(j)·q is the scalar curvature of the metric
(2.1) onG/K. It follows from the scalar curvature formula of a homogeneous metric in
[10] that the vectorsw(j) may be of three kinds:

(i) one entry is−1, the rest are zero;
(ii) one entry is 1, two are−1, the rest are zero;

(iii) one entry is 1, one is−2, the rest are zero.

In particular,w(j) · (1, . . . ,1) = −1 in all cases. We denote byw(j)i theith entry ofw(j).
In order to carry out the Painlevé analysis, it will be advantageous to replace Hamilton’s

equations for the HamiltonianH by a quadratic system involving 2r + m new dependent
variables andm additional constraints. As well as simplifying calculations, this has the
advantage that general arguments about systems with only quadratic non-linearities guar-
antee that the formal series solutions we construct are in fact convergent on a punctured
neighbourhood of the singularity (cf.[2,6]).

A special case (m = 0) of this transformation was already used in[6], where we adapted
to our situation a similar transformation of the Toda-lattice equations discussed by Adler
and van Moerbeke[2].

We now explain how the transformation works in the general situation, i.e., whenm ≥ 0.
LetC be a matrix such thatC−1J(C−1)T = diag(µ1, . . . , µr) and introduce new symplectic
coordinatesa, b by q = Ca, b = pC, and setd̄ = dC, w̄(j) = w(j)C. Taking a new
coordinates defined by ds = e−(1/2)d̄·a dt, we saw in[6] that the Einstein equations are
equivalent to the Hamiltonian flow for the new Hamiltonian

H̄ = e(1/2)d̄·aH =
r∑
j=1

µjb
2
j + (n− 1)Λed̄·a −

r+m∑
j=1

Aj e(d̄+w̄
(j))·a. (2.3)

We shall assume that the set of vectorsw(j) contains a basis forRr (this is always true ifG is
semisimple, cf. the proof of Theorem 3.11 in[5]), and by reordering we takew(1), . . . , w(r)

to be such a basis. We define anm× r matrixν by

w(i+r) =
r∑
j=1

νijw
(j) (1 ≤ i ≤ m).
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Notice that taking the scalar product of both sides with(1, . . . ,1) shows that

r∑
j=1

νij = 1 for all i.

We now introduce a new set of symplectic coordinates by setting

xi = e(d̄+w̄
(i))·a = e(d+w

(i))·q (i = 1, . . . , r),

andyi to be the associated momentum variables. LetU be the invertibler×rmatrix defined
by Uij = dj + w

(i)
j (1 ≤ i, j ≤ r) and letE = UJUT. If we also defineŪ = UC, then the

momentum variables satisfy

yi =
∑
j

bjŪ
jix−1
i ,

sob = (x1y1, . . . , xryr)Ū.
Moreover,

a1

...

ar


 = Ū−1




logx1

...

logxr


 ,

so settingξ = −d̄Ū−1, we have

r∑
i=1

ξi logxi = −d̄a.

The new Hamiltonian now becomes

H̄ =
r∑

i,j=1

Eijxiyixjyj + (n− 1)Λed̄·a −
r+m∑
j=1

Aj e(d̄+w̄
(j))·a

=
r∑

i,j=1

Eijxiyixjyj + (n− 1)Λ
r∏
j=1

x
−ξj
j −

r∑
j=1

Ajxj −
m∑
j=1

Aj+r
r∏
k=1

x
νjk

k .

Hamilton’s equations for̄H in these variables are

x′
i = 2xi

r∑
j=1

Eijxjyj,

y′
i = −


2yi

r∑
j=1

Eijxjyj − (n− 1)Λξix
−1
i

r∏
j=1

x
−ξj
j − Ai −

m∑
j=1

Aj+rνjix
−1
i

r∏
k=1

x
νjk

k



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for i = 1, . . . , r. Lettingui = xiyi we can rewrite this as

x′
i = 2xi

r∑
j=1

Eijuj = 2xi(Eu)i, (2.4)

u′
i = Aixi +

m∑
j=1

Aj+rνji

r∏
k=1

x
νjk

k + (n− 1)Λξi

r∏
j=1

x
−ξj
j . (2.5)

We now specialise to the caseΛ = 0. We set

xj+r = e(d̄+w̄
(j+r))·a =

r∏
k=1

x
νjk

k (1 ≤ j ≤ m), (2.6)

so that

x′
j+r = xj+r

r∑
k=1

νjkx
−1
k x′

k = 2xj+r(νEu)j. (2.7)

Introduce a matrix̂U defined by

Ûij = dj + w
(i)
j (1 ≤ i ≤ r +m,1 ≤ j ≤ r),

so that

Û =
(
U

νU

)
,

and hence

(−ν Im)Û = 0. (2.8)

Also ÛJÛT is the(r +m)× (r +m)matrix whoseij th entry isJ(d +w(i), d +w(j)). We
can write

ÛJÛT = ΘD̂ΘT,

where

Θ =
(
Θ1 0r×m
Θ2 0m×m

)
, D̂ =

(
D 0r×m

0m×r 0m×m

)
,

D is ther × r matrix diag(1,−1, . . . ,−1), Θ1 is r × r and of rankr, Θ2 is m × r, and
E = Θ1DΘ

T
1. Observe that

ΘD̂ΘT

(
−νT

Im

)
= ÛJ

(
ÛT

(
−νT

Im

))
= 0
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from (2.8). But also

D̂ΘT

(
−νT

Im

)
=
(
DΘT

1 DΘT
2

0 0

)(
−νT

Im

)
=
(−DΘT

1ν
T +DΘT

2

0

)
,

which can only be in the kernel ofΘ if it is zero, that is, ifΘT
2 = ΘT

1ν
T, and hence

D̂ΘT
(
νT

0

)
= D̂ΘT

(
0
Im

)
. (2.9)

Note that we have shown thatΘ2 = νΘ1.
Let zi = Aixi and define

v = D̂ΘT
(

u

0m×1

)
,

whereu is the column vector consisting of theui. It follows thatvr+1 = · · · = vr+m = 0.
Then from(2.4) and (2.7)we havez′i = 2zi(Θv)i and from(2.5)we obtain

v′ = D̂ΘT
(

u′
0m×1

)
= D̂ΘT






z1
...

zr
0m×1


+

(
νT

0m×m

)
zr+1
...

zr+m




 .

Using(2.9), we finally obtain the following quadratic system:

z′i = 2zi

r+m∑
j=1

Θijvj, (2.10)

v′i = εi

r+m∑
j=1

Θji zj, (2.11)

whereε1 = 1, εi = −1 for 1< i ≤ r, andεi = 0 for i > r.
Observe that the Hamiltonian̄H can now be written as

H̄ = v2
1 − v2

2 − · · · − v2
r −

r+m∑
j=1

zj,

and the relations(2.6)may be viewed as additional constraints

zr+j
Ar+j

=
r∏
i=1

(
zi

Ai

)νji

(1 ≤ j ≤ m), (2.12)

which, together with the Hamiltonian constraintH̄ = 0, single out the solutions which
solve the original Einstein system.



18 A. Dancer, M.Y. Wang / Journal of Geometry and Physics 48 (2003) 12–43

Remark 2.1. On the other hand, if we are given the system(2.10) and (2.11), then using
the property(2.9), it follows easily that:

 r∏
j=1

|zj|νij


 |zi+r|−1

are first integrals of the system.
In fact, we can define a Poisson structure on

Rr+m± × Rr+m = {((z1, . . . , zr+m), (v1, . . . , vr+m)), zi ∈ R − {0}, vi ∈ R, }
by introducing the bivector

Ω =
r+m∑
i,j=1

Ωij ∂

∂vi
∧ ∂

∂zj
,

whereΩij = εiΘji zj, and using it to define the Poisson bracket{F1, F2} to be equal to

∑
i,j

Ωij
(
∂F1

∂vi

∂F2

∂zj
− ∂F1

∂zj

∂F2

∂vi

)
.

Then the Hamiltonian vector field corresponding to the functionH̄ under this Poisson struc-
ture is equivalent to the system(2.10) and (2.11). Furthermore, the variety
defined by

L =
{
vr+j = 0,

zr+j
Ar+j

=
r∏
i=1

(
zi

Ai

)νji

(1 ≤ j ≤ m)

}

is a symplectic leaf of the above Poisson manifold and the Hamiltonian flow ofH̄ on
L∩{H̄ = 0} is equivalent to the cohomogeneity one Einstein system. It follows immediately
that an integral curve of the system(2.10) and (2.11)which starts inL ∩ {H̄ = 0} remains
in it for all time.

Remark 2.2. If Λ 
= 0, sinced = −ξU, we may add−ξ to the last row ofν, regard
(1− n)Λ to be another constantA0, and hence incorporate the term(n− 1)Λed̄·a into the
scalar curvature formula.

The above discussion also applies to the case when we have a Lorentz metric and the
principal orbits are space-like hypersurfaces. We simply need to replace all the constants
Ai (includingA0 if Λ 
= 0) by−Ai and dt2 in ḡ by −dt2.

3. The two-summand case

Let us specialise to the case wherer = 2, that is, there are two inequivalent summands
in the isotropy representation. Recall that the principal orbitG/K is an almost effective
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connected compact homogeneous space, whereG is a compact Lie group andK is a closed
subgroup, neither of which is assumed to be connected. According to the calculations
leading to (1.3) in[10], the scalar curvature of aG-invariant metric onG/K takes the
form

S = −A1 eq1 − A2 eq2 + A3 eq1−2q2 + A4 eq2−2q1, (3.1)

whereA1 andA2 are non-negative,A3 = −(1/4)Γ221,A4 = −(1/4)Γ112, and the constant
Γijk denotes the sum

∑
α,β,γ

B([eα, eβ], eγ)
2

in which {eα}, {eβ}, and{eγ }, respectively, range overB-orthonormal bases ofpi, pj and
pk. It follows that if k is a maximal Ad(K)-invariant subalgebra ofg, thenA3 andA4 are
both negative. On the other hand, ifk ⊂ h ⊂ g is an Ad(K)-invariant proper intermediate
subalgebra, then we may assume after reindexing thatA4 = 0. Furthermore, by the discus-
sion on p. 182 of[10], for i = 1,2, the constantsAi = 0 iff the identity component ofK
acts trivially onpi, pi is Abelian, and [pi, pj] ⊂ pj for j 
= i.

Consequently, the possible weight vectorsw(j) are(0,−1), (−1,0), (1,−2), (−2,1)and
the non-trivial situations to consider are when the setW of weight vectors is:

(i) {(0,−1), (−1,0)},
(ii) {(0,−1), (1,−2)},

(iii) {(0,−1), (−1,0), (1,−2)}, or
(iv) {(0,−1), (−1,0), (1,−2), (−2,1)}.
Cases (i) and (ii) were analysed in[6]. Situation (i) is the case of doubly-warped product
metrics where the hypersurface is a product of isotropy irreducible spaces (or more generally
Einstein spaces with non-zero Einstein constant). Case (ii) can occur if the hypersurface is
a torus bundle over an Einstein base. In both (i) and (ii) we havem = 0 so there are no
additional constraints in the equations.

In this paper we shall study Cases (iii) and (iv). Case (iv) is when the hypersurfaceG/K

has two inequivalent summands in its isotropy representation and wherek is a maximal
Ad(K)-invariant subalgebra ing. A connected homogeneous spaceG/K satisfying the
latter maximality condition is called aprimitive homogeneous space and by the proof
of Theorem 2.2 in[10], there always exists on it aG-invariant Einstein metric. But the
maximality condition also means that the cohomogeneity one manifold(G/K)× I cannot
be compactified by adding singular orbits.

Thus Case (iii) is the generic situation when there are two distinct summands. In this case,
the principal orbit admits aG-invariant Einstein metric iffA2

2+4A1A3(2d1+d2)(d2/d
2
1) ≥

0 (cf. [10]). If equality holds, there is only one solution of the homogeneous Einstein
equation; otherwise, there are two solutions.

We will now specialise the discussion inSection 2to Cases (iii) and (iv). However, we
will take the 2× 2 matrixD to be diag(−1,1) instead of diag(1,−1). In Case (iii) we have
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m = 1 andd1 
= 1 (otherwiseA1 = 0 by the above discussion). Then

Û =

 d1 − 1 d2

d1 d2 − 1
d1 + 1 d2 − 2


 , ν = (−1 2

)
,

ÛJÛT =




1 − 1

d1
1 1+ 1

d1

1 1− 1

d2
1 − 2

d2

1 + 1

d1
1 − 2

d2
1 − 1

d1
− 4

d2



,

Θ =
√

d1

d1 − 1




0
d1 − 1

d1
0

√
n− 1

d1d2
1 0

2

√
n− 1

d1d2

d1 + 1

d1
0



.

Rescalingv1 by
√
d1/(d1 − 1)

√
(n− 1)/d1d2 andv2 by

√
d1/(d1 − 1), the equations are

now

z′1 = 2(d1 − 1)

d1
z1v2, (3.2)

z′2 = z2(2v1 + 2v2), (3.3)

z′3 = z3

(
4v1 + 2(d1 + 1)

d1
v2

)
, (3.4)

v′1 = 1 − n

(d1 − 1)d2
(z2 + 2z3) , (3.5)

v′2 = z1 +
(

d1

d1 − 1

)
z2 +

(
d1 + 1

d1 − 1

)
z3. (3.6)

The Hamiltonian constraint is

−d2(d1 − 1)

n− 1
v2

1 +
(
d1 − 1

d1

)
v2

2 − z1 − z2 − z3 = 0, (3.7)

and the additional constraint is

z2
2 = κ1z1z3, (3.8)

whereκ1 = A2
2/A1A3, which is negative becauseA1, A2 are positive andA3 is negative.
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In Case (iv) we havem = 2, and we will assume thatdi ≥ 2. Then

Û =



d1 − 1 d2

d1 d2 − 1

d1 + 1 d2 − 2

d1 − 2 d2 + 1


 , ν =

(−1 2
2 −1

)
,

ÛJÛT =




1 − 1

d1
1 1+ 1

d1
1 − 2

d1

1 1− 1

d2
1 − 2

d2
1 + 1

d2

1 + 1

d1
1 − 2

d2
1 − 1

d1
− 4

d2
1 + 2

d1
+ 2

d2

1 − 2

d1
1 + 1

d2
1 + 2

d1
+ 2

d2
1 − 4

d1
− 1

d2



,

Θ =
√

d1

d1 − 1




0
d1 − 1

d1
0 0

√
n− 1

d1d2
1 0 0

2

√
n− 1

d1d2

d1 + 1

d1
0 0

−
√
n− 1

d1d2

d1 − 2

d1
0 0



.

Rescalingvi as above the equations become

z′1 = 2(d1 − 1)

d1
z1v2, (3.9)

z′2 = z2(2v1 + 2v2), (3.10)

z′3 = z3

(
4v1 + 2(d1 + 1)

d1
v2

)
, (3.11)

z′4 = z4

(
−2v1 + 2(d1 − 2)

d1
v2

)
, (3.12)

v′1 = 1 − n

d2(d1 − 1)
(z2 + 2z3 − z4) , (3.13)

v′2 = z1 +
(

d1

d1 − 1

)
z2 +

(
d1 + 1

d1 − 1

)
z3 +

(
d1 − 2

d1 − 1

)
z4. (3.14)
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The Hamiltonian constraint is

−d2(d1 − 1)

n− 1
v2

1 +
(
d1 − 1

d1

)
v2

2 − z1 − z2 − z3 − z4 = 0, (3.15)

and the additional constraints are

z2
2 = κ1z1z3, (3.16)

z2
1 = κ2z2z4, (3.17)

whereκ1 = A2
2/A1A3 andκ2 = A2

1/A2A4.

Remark 3.1. Our equations have polynomial right-hand side with only quadratic non-
linearities. A majorisation argument (for example along the lines of that in[6]) shows that
formal series solutions to the equations around a singularity will in fact converge on a
punctured disc around the singularity.

4. Leading terms

Let us consider the generic case (iii). We shall first find the possible leading terms of a
Painlevé expansion. We put

zi = α(i)smi + · · · , vi = β(i)sni + · · · .

(a) First suppose thatm1 = 0. Now(3.2) implies thatn2 > −1.
If m2 
= 0 thenn1 = −1 from(3.3), soequations (3.2)–(3.4)show that(m1,m2,m3) =

β(1)(0,2,4). Now (3.5) forcesβ(1) < 0 som3 is the leastmi, and now(3.5) and (3.6)
show thatn1 = n2, a contradiction.

If m2 = 0 then(3.2)–(3.4)imply n1, n2 > −1 and hencem3 = 0 also, and we have
no singularity.

(b) We can therefore assume thatm1 
= 0 and hencen2 = −1 ≤ n1 from (3.2)–(3.4).
If n1 > −1 then(m1,m2,m3) = 2β(2)((d1−1)/d1,1, (d1+1)/d1). If β(2) is positive

then allmi are positive and(3.5)gives a contradiction. Ifβ(2) is negative thenm3 is the
leastmi and so(3.5) and (3.6)forcen1 = n2, a contradiction.

(c) We now consider the casen1 = n2 = −1. Eqs. (3.2)–(3.4)show that


m1
m2
m3


 =




2(d1 − 1)

d1
β(2)

2β(1) + 2β(2)

4β(1) + 2(d1 + 1)

d1
β(2)


 .

Note that all themi are distinct unlessβ(2) + d1β
(1) = 0, when they are all equal.

If m1 is the least of themi, (3.5) and (3.6)shows thatn2 < n1, an immediate
contradiction.
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If m2 is least, then(3.5) and (3.6)imply

(β(1), β(2)) = α(2)

d1 − 1

(
n− 1

d2
,−d1

)
.

Substituting this into our expressions formi we find after some simplifying that



m1

m2

m3


 = −2α(2)




1

1 − 1

d2

1 − 2

d2


 ,

contradicting the assumption thatm2 is least.
If m3 is least then, as above, we use(3.5) and (3.6)to expressβ(i) in terms ofα(i):

(β(1), β(2)) = α(3)

d1 − 1

(
2(n− 1)

d2
,−(d1 + 1)

)
.

We obtain the following expression formi:


m1
m2
m3


 = −2α(3)




1 + 1

d1

1 − 2

d2

1 − 1

d1
− 4

d2



.

As we are takingm3 < m1,m2 we needα(3) < 0. Eqs. (3.5) and (3.6)imply that
m3 = −2, so

α(3) = 1

1 − (1/d1)− (4/d2)
,

and

d2 <
4d1

d1 − 1
.

(d) The last case to consider is whenβ(2) + d1β
(1) = 0 and hence all themi are equal (in

fact they equal 2β(1)(1 − d1)).
There are two possibilities from(3.5) and (3.6).

Eithermi = −2 and

β(1)= n− 1

(d1 − 1)d2
(α(2) + 2α(3)), β(2) = −α(1) −

(
d1

d1 − 1

)
α(2)−

(
d1 + 1

d1 − 1

)
α(3),

ormi < −2 and the linear combinations ofα(i) in the preceding equations are zero.
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In the latter case we find thatα(1) = α(3) = −(1/2)α(2) and the constraint now gives a
contradiction.

In the former case we obtain, using the equationsmi = −2 andβ(2) + d1β
(1) = 0,

β(1) = 1

d1 − 1
, β(2) = − d1

d1 − 1
, α(1) = α(3) + d1

n− 1
,

α(2) = −2α(3) + d2

n− 1
.

Imposing the constraint(3.8)now gives the equation

(κ1 − 4)(α(3))2 +
(
κ1d1 + 4d2

n− 1

)
α(3) −

(
d2

n− 1

)2

= 0. (4.1)

Recall thatκ1 is negative, in particular does not equal to 4, and so we have a genuine
quadratic equation forα(3). Let us now introduce a variableτ by the relation(

2 + A2

A1
τ

)
((n− 1)α(3) + d1) = 2d1 + d2.

Indeed,τ is just the asymptotic value off 2
1 /f

2
2 (cf. (9.1) and (9.2)), which is given by

A1α
(2)/A2α

(1). Under the transformation fromα(3) to τ, the quadraticequation (4.1)be-
comes a quadratic equation inτ which is precisely the Einstein condition forG-invariant
metrics on the principal orbitG/K.

We summarise our results in the following theorem.

Theorem 4.1. The possible leading terms for Case(iii) are as follows:

(I) If d2 < 4d1/(d1 − 1) we can have



m1

m2

m3


 = 2d1d2

4d1 − d2(d1 − 1)




1 + 1

d1

1 − 2

d2

4d1 − d2(d1 − 1)

−d1d2



,

(
n1

n2

)
=
(

−1

−1

)
,




α(1)

α(2)

α(3)

β(1)

β(2)




=




α(1)

α(2)

−d1d2

4d1 − d2(d1 − 1)

2(n− 1)

d2(d1 − 1)
α(3)

−
(
d1 + 1

d1 − 1

)
α(3)



,
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where the constraint(3.8)becomes the relation

(α(2))2 = −κ1d1d2

4d1 − d2(d1 − 1)
α(1).

(II) In all cases we can have




m1

m2

m3

n1

n2


 =




−2

−2

−2

−1

−1


 ,




α(1)

α(2)

α(3)

β(1)

β(2)


 =




α(3) + d1

n− 1

−2α(3) + d2

n− 1

α(3)

1

d1 − 1

−d1

d1 − 1




,

whereα(3) is a root of

(κ1 − 4)x2 +
(
κ1d1 + 4d2

n− 1

)
x−

(
d2

n− 1

)2

= 0.

Each real rootα(3), necessarily negative, corresponds to aG-invariant Einstein metric
onG/K of volume1.

Remark 4.2. It is interesting to observe that if the inequality in the condition for Case (I)
to arise is replaced by theequality

d2 = 4d1

d1 − 1
,

we obtain the condition under which conserved quantities were found for double warped
product metrics in[4]. These warped product metrics correspond of course to Case (i) of
Section 3, rather than Case (iii) which we are analysing here.

Remark 4.3. The leading terms in (II) are expected by a priori consideration whenG/K

admits aG-invariant Einstein metric with positive constant because the metric cone over
it is Ricci-flat. Conversely, the asymptotic behaviour discussed inSection 9associates the
leading terms with aG-invariant Einstein metric onG/K. Note also that in (I) we have
m1,m2 ≥ 0 so onlyz3, v1, v2 blow up, whereas in (II) all the variables blow up. See
Section 9for more discussion of the asymptotic geometric behaviour of the leading terms.

5. Resonances

The next step is to compute the resonances for each set of possible leading terms.
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We substitute

zi =
∞∑
j=0

α
(i)
j s

mi+(j/Q), vi =
∞∑
j=0

β
(i)
j s

−1+(j/Q),

whereQ is some integer to be determined later, into the equations. In the notation of
the previous section,α(i) = α

(i)
0 , β(i) = β

(i)
0 . Equating powers, we obtain the following

recursion relations (valid forj 
= 0):

• Case (I)


j

Q
0 0 0

−2(d1 − 1)

d1
α
(1)
0

0
j

Q
0 −2α(2)0 −2α(2)0

0 0
j

Q
−4α(3)0 −2(d1 + 1)

d1
α
(3)
0

0 0
2(n− 1)

(d1 − 1)d2

j

Q
− 1 0

0 0 −
(
d1 + 1

d1 − 1

)
0

j

Q
− 1







α
(1)
j

α
(2)
j

α
(3)
j

β
(1)
j

β
(2)
j




=




2(d1 − 1)

d1

j−1∑
i=1

α
(1)
i β

(2)
j−i

2
∑j−1
i=1 α

(2)
i (β

(1)
j−i + β

(2)
j−i)∑j−1

i=1 α
(3)
i

(
4β(1)j−i +

2(d1 + 1)

d1
β
(2)
j−i

)
1 − n

(d1 − 1)d2
α
(2)
j−Q(m2+2)

α
(1)
j−Q(m1+2) + d1

d1 − 1
α
(2)
j−Q(m2+2)




. (5.1)

• Case (II)


j

Q
0 0 0 −2(d1 − 1)

d1
α
(1)
0

0
j

Q
0 −2α(2)0 −2α(2)0

0 0
j

Q
−4α(3)0 −2(d1 + 1)

d1
α
(3)
0

0
n− 1

(d1 − 1)d2

2(n− 1)

(d1 − 1)d2

j

Q
− 1 0

−1
−d1

d1 − 1
−
(
d1 + 1

d1 − 1

)
0

j

Q
− 1







α
(1)
j

α
(2)
j

α
(3)
j

β
(1)
j

β
(2)
j



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=




2(d1 − 1)

d1

j−1∑
i=1

α
(1)
i β

(2)
j−i

2
∑j−1
i=1 α

(2)
i (β

(1)
j−i + β

(2)
j−i)∑j−1

i=1 α
(3)
i

(
4β(1)j−i +

2(d1 + 1)

d1
β
(2)
j−i

)
0

0



. (5.2)

Notice thatQ(m1 + 2) = 2Q(m2 + 2) in Case (I).
In the above recursions we setR = j/Q and denote the coefficient matrix on the left-hand

side byZ(R). The resonances correspond to the steps of the recursion at which free param-
eters enter. More precisely, they are (forR 
= 0) the values ofR = j/Q for whichZ(R) is
non-invertible. To compute the resonances, let us therefore replace the right-hand side of the
recursion by zero and see when there is a non-trivial solution to the equationZ(R)x = 0.

In Case (I) we can use the first three equations to eliminateα
(i)
j and we are left with

R(R− 1)


 β(1)j
β
(2)
j


 = α

(3)
0




8(1 − n)

d2(d1 − 1)

4(1 − n)(d1 + 1)

d1d2(d1 − 1)

4(d1 + 1)

d1 − 1

2(d1 + 1)2

d1(d1 − 1)




 β(1)j
β
(2)
j


 . (5.3)

The matrix on the right (including theα(3)0 factor) clearly has determinant zero. Moreover,
after some calculation we find its trace to be

2

(
1 − 1

d1
− 4

d2

)
α
(3)
0 = 2, (5.4)

so the matrix has eigenvalues 0 and 2. The resonances are therefore the roots ofR(R−1) = 0
or R(R − 1) = 2, that is−1,0,1,2. (Eq. (5.1)is not valid forR = 0 but zero is still a
resonance because the leading terms contain a free parameter.)

In Case (II) we proceed similarly and find that the resonances are given by the roots of
R(R− 1) = λ, whereλ is an eigenvalue of


1 − n

d2(d1 − 1)
(2α(2)0 + 8α(3)0 )

1 − n

d2(d1 − 1)

(
2α(2)0 + 4

(
d1 + 1

d1

)
α
(3)
0

)
2

d1 − 1
(d1α

(2)
0 + 2(d1 + 1)α(3)0 ) 2

(
d1 − 1

d1

)
α
(1)
0 +

(
2d1

d1 − 1

)
α
(2)
0 + 2(d1 + 1)2

d1(d1 − 1)
α
(3)
0


 .

Using the formulae ofTheorem 4.1for α(i)0 we can simplify this matrix to




2d1

1 − d1
+ 2 + 4(n− 1)

d2(1 − d1)
α
(3)
0

2

1 − d1
+ 4(n− 1)

d1d2(1 − d1)
α
(3)
0

2

1 − d1

(
d1d2

1 − n

)
+ 4

d1 − 1
α
(3)
0

2d2

(1 − d1)(1 − n)
+ 2 + 4

d1(d1 − 1)
α
(3)
0


 .
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Clearly, 2 is an eigenvalue of this matrix, while from computing the trace we see the other
eigenvalue is 2/(1 − n)− (4n/d1d2)α

(3)
0 .

Theorem 5.1. The resonances in the Painlevé analysis of the system(3.2)–(3.6)with con-
straint (3.8)are as follows:

Case(I) R = −1,0,1,2,
Case(II) R = −1,2 and the(non-zero) roots of

R(R− 1) = 2

1 − n
− 4n

d1d2
α
(3)
0 ,

whereα(3)0 is given by(4.1).

Remark 5.2. The appearance ofR = −1 as a resonance is typical for autonomous systems
of differential equations, and is associated to the degree of freedom we have in translating
the independent variables. We shall see inSection 6that the degree of freedom from the
resonance atR = 2 is fixed by the Hamiltonian constraint.

Remark 5.3. In Case (II), anecessarycondition for there to be a rational resonance other
than−1,2 is thatα(3)0 is rational. From(4.1) this condition is√

κ2
1d

2
1 + 8κ1d1d2 + 4κ1d

2
2 ∈ Q. (5.5)

Remark 5.4. Denoting 2/(1 − n) − (4n/d1d2)α
(3)
0 by θ, we have the following table

relating the value ofθ to the values of the rootsR1 ≤ R2 of R(R − 1) = θ. Of course
R1 + R2 = 1:

θ < −1
4, R1, R2 ∈ C − R, θ = −1

4, R1 = R2 = 1
2,

−1
4 < θ < 0, 0< R1 < R2 < 1, θ = 0, R1 = 0, R1 = 1,

0< θ < 2, −1< R1 < 0< 1< R2 < 2, θ = 2, R1 = −1, R2 = 2,

θ > 2, R1 < −1< 2< R2.

Remark 5.5. One can easily check thatθ = 0 if and only if the quadratic equation forα(3)0
has a repeated root (that is, if and only ifG/K admits auniqueG-invariant Einstein metric).
In this situation the Painlevé expansion for Case (II) has resonances−1,1,2.

6. Compatibility conditions

At each resonance we must check that the recursion is solvable. Let us first consider Case
(I).

Observe first fromTheorem 4.1thatm1 is positive,m2 is non-negative andm2 vanishes
if and only if d1 = 2. For the steps in the recursion up to and including the top resonance
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R = 2, it follows that, except whend1 = 2, the terms in the last two entries of the right-hand
side of(5.1)are zero.

For j < Q, sinceZ is invertible, we see thatα(i)j , β(i)j and the right-hand side of(5.1),
are all zero. AtR = 1, that isj = Q, solving the recursion is just finding the kernel ofZ.
So we have



α
(1)
Q

α
(2)
Q

α
(3)
Q

β
(1)
Q

β
(2)
Q




= µ




4(1 − d1)α
(1)
0

2(1 − d1)α
(2)
0

0

d1 + 1

−2d1



, (6.1)

whereµ is a free parameter.
At R = 2, that isj = 2Q, the kernel ofZT is spanned by(0,0,1,4α(3)0 , (2(d1 +

1)/d1)α
(3)
0 )T so if d1 
= 2 the compatibility condition becomes

2Q−1∑
i=1

α
(3)
i

(
4β(1)2Q−i +

2(d1 + 1)

d1
β
(2)
2Q−i

)
= 0. (6.2)

Note that this is true even ifd1 = 2 because in this case the terms in the last two places
on the right-hand side of(5.1)areσ1 = [(1−n)/(d1−1)d2]α(2)0 andσ2 = (d1/(d1−1))α(2)0 ,
respectively, and it is easy to check that ifd1 = 2 then 4σ1 + (2(d1 + 1)/d1)

σ2 = 0.
Now we have already observed that for 0< j < Q the quantitiesα(i)j andβ(i)j are zero.

It follows that the only term which contributes to the sum in(6.2) is the one withi = Q,
and this is zero because from(6.1)α(3)Q is zero. Hence the recursion is solvable atj = 2Q
and we are done.

The free parameter entering the Painlevé expansion at the top resonance is just the freedom
to add an element of kerZ(2) to (α(1)2Q, . . . , β

(2)
2Q). We can take

((
1 − d1

d1

)
α
(1)
0 ,

(
2(n− 1)

(d1 + 1)d2
− 1

)
α
(2)
0 ,

(
4(n− 1)

d2(d1 + 1)
− d1 + 1

d1

)
α
(3)
0 ,

2(n− 1)

(d1 + 1)d2
,−1

)T

as a generator of the kernel. Since the Hamiltonian is constant along a solution ofEqs.
(3.2)–(3.6), the value of the constant in the present situation is determined by the constant
term of the expansion of the Hamiltonian in powers ofs, and this equals(

0,0,−1,−4α(3)0 ,−2(d1 + 1)

d1
α
(3)
0

)
· (α(1)2Q, α

(2)
2Q, α

(3)
2Q, β

(1)
2Q, β

(2)
2Q) (6.3)
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plus terms with subscriptsj < 2Q. The scalar product of the left-hand vector of(6.3)with
our generator of the kernel ofZ(2) is

3α(3)0

(
d1 + 1

d1
− 4(n− 1)

(d1 + 1)d2

)
= 3α(3)0 (d1 − 1)

d1d2(d1 + 1)
(d2(d1 − 1)− 4d1) 
= 0

by assumption, so the free parameter at the top resonance is fixed by the Hamiltonian
constraint. Finally, we observe that byRemark 2.1, z2

2/z1z3 is a conserved quantity of our
equations, and that its value on our Painlevé series solution is determined by the leading
terms. Since we have already chosen the coefficients in the leading terms to satisfy the
constraint, it follows that(3.8)holds. We have now proved the following theorem.

Theorem 6.1. If d2 < 4d1/(d1 − 1) then family(I) gives rise to a convergent Painlevé
expansion satisfying all the constraints and depending on the full number of parameters.

Remark 6.2. One can check that for all the values ofd1, d2 satisfying the inequality of
Theorem 6.1, except the cased2 = 3, d1 
= 3, we havemi integral. As the resonancesR are
always integral, we can therefore takeQ = 1 except in this special case. So our expansions
are actually meromorphic ins (rather than a fractional power ofs) unlessd2 = 3, d1 
= 3.

For family (II) we can prove the following result at the top resonance.

Lemma 6.3. The recursion in family(II) at the top resonance is solvable provided the
earlier recursions are solvable. Moreover, the free parameter at the top resonance is fixed
by the Hamiltonian constraint.

Proof. One can easily verify that the kernel ofZ(2)T is spanned by(1,1,1,2d2/(n−1),2)T.
The compatibility condition at the top resonanceR = 2 (that is,j = 2Q) is therefore

2(d1 − 1)

d1

2Q−1∑
i=1

α
(1)
i β

(2)
2Q−i + 2

2Q−1∑
i=1

α
(2)
i (β

(1)
2Q−i + β

(2)
2Q−i)

+
2Q−1∑
i=1

α
(3)
i

(
4β(1)2Q−i +

2(d1 + 1)

d1
β
(2)
2Q−i

)
= 0.

We can write this as

2
2Q−1∑
i=1

(α
(2)
i + 2α(3)i )β

(1)
2Q−i

+2(d1 − 1)

d1

2Q−1∑
i=1

(
α
(1)
i + d1

d1 − 1
α
(2)
i + d1 + 1

d1 − 1
α
(3)
i

)
β
(2)
2Q−i = 0,
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and hence, using the fourth and fifth rows of the recursion(5.2), as

2(d1 − 1)d2

1 − n

2Q−1∑
i=1

(
i

Q
− 1

)
β
(1)
i β

(1)
2Q−i +

2(d1 − 1)

d1

2Q−1∑
i=1

(
i

Q
− 1

)
β
(2)
i β

(2)
2Q−i = 0.

Changing the index tok = 2Q− i we see that both terms on the left-hand side now vanish.
The kernel ofZ(2) is generated by((1− d1)α

(1)
0 , (1− d1)α

(2)
0 , (1− d1)α

(3)
0 ,1,−d1). On

the other hand, the constant term in the Hamiltonian is(
−1,−1,−1,

−2d2

n− 1
,−2

)
· (α(1)2Q, α

(2)
2Q, α

(3)
2Q, β

(1)
2Q, β

(2)
2Q)

plus terms with subscriptsj < 2Q. The inner product of the vector on the left with the
generator of ker(Z(2)) is 3(d1 − 1)n/(n− 1) 
= 0, proving our last claim. �

Remark 6.4. We can also observe that in Case (II) compatibility always holds at the step
j1 corresponding to the first positive resonance, becauseα

(i)
j , β

(i)
j and the right-hand side

of (5.2)are zero forj < j1.
However, if the resonancesR1, R2 other than−1,2 satisfy 0< R1 < R2 < 2 it may

happen that the compatibility condition atR2 is not satisfied. InSection 7we shall see an
example (G/K = SO(5)/U(2)) of this kind. In this example the compatibility condition
atR2 only holds if the free parameter atR1 is set to zero, so we do not obtain a Painlevé
expansion depending on the full number of parameters.

The following result gives a sufficient condition for all compatibility conditions to hold.

Lemma 6.5. If

−1

4
<

2

1 − n
− 4n

d1d2
α
(3)
0 < −2

9

then all compatibility conditions hold and we have a Painlevé expansion of type(II) de-
pending on the full number of parameters.

Proof. We observed above thatα(i)j , β
(i)
j are zero forj < j1. It follows that the right-hand

side of (5.2) is still zero for j < 2j1, so compatibility in fact holds forj < 2j1. So
if we have 0 < R1 < R2 < min(2R1,2) then all compatibility conditions hold. In
the notation ofRemark 5.4, we see thatR1, R2 satisfy these inequalities if and only
if −(1/4) < θ < 2/9. �

Remark 6.6. As remarked earlier,α(3)0 is negative when real. It follows that anecessary
(but not sufficient) condition for the hypothesis ofLemma 6.5to hold is thatn < 10. In
Section 7we shall see an example (G/K = Sp(2)Sp(1)/Sp(1)Sp(1) andn = 7), where
Lemma 6.5applies. On the other hand, the exampleG/K = SO(5)/U(2) below shows
that n < 10 is notsufficientfor either the hypothesis or the conclusion ofLemma 6.5
to hold.
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7. Examples

Example 7.1 (G/K = SO(5)/U(2) ≈ CP3). This is the total space of the twistor space
of S4 ≈ SO(5)/SO(4) (as a self-dual manifold), sod1 = 2 andd2 = 4. The constantκ1
is −36. Note that SO(5)/U(2) admits exactly two SO(5)-invariant Einstein metrics: the
Fubini–Study metric and the Einstein metric induced by the Killing form of SO(5), which
was first found in[11].

As d2 < 4d1/(d1 − 1) the expansion (I) exists, with(m1,m2,m3) = (6,2,−2).
For (II) we have: (a)α(3)0 = −(1/5) or (b) α(3)0 = −(2/25). By Theorem 5.1the reso-

nances are:

(IIa) R = −1,2 and the two irrational roots ofR(R− 1) = (1/5);
(IIb) R = −1,1/5,4/5,2.

After imposing the Hamiltonian constraint, the Painlevé expansion from (IIa) depends only
on one free parameter, and represents, up to translation ofs, the cone over the Fubini–Study
metric.

For (IIb), we obtain a Painlevé expansion in powers ofs1/5. The compatibility condition at
R = 1/5 holds automatically, but computations by hand or MAPLE show that compatibility
atR = 4/5 forces the free parameter atR = 1/5 to be zero. The upshot is that the Ricci-flat
equations admit a 2-parameter Painlevé expansion, where one free parameter is translation
of s and the other comes from the resonance 4/5.

One can check that this family in fact represents the metrics ofG2 holonomy found in
[3,7]. To do this, we first show that the condition for a cohomogeneity oneG2-metric is
given by

2v2
1 = −25z3,

(
6v1

5
+ v2

)2

= 2z1,

and the constraint equationz2
2 = −36z1z3. These equations cut out a surface in the space of

thezi andvj. One can then check that the Hamiltonian vector field is tangent to this surface.
Usingv1 andv2 to parameterise this surface, we obtain the following quadratic subsystem
of (3.2)–(3.6):

v′1 = v1(2v1 + 3
2v2), v′2 = −6

5v1(2v1 + v2)+ 1
2v

2
2.

Next, we show that this subsystem has a 2-parameter family of Painlevé expansions with
leading terms forvj exactly the same those forvj in (IIb). Furthermore, the resonances are
now at−1 and 4/5. Expressing thezi in terms ofvj we recover the 2-parameter family of
Painlevé expansions we obtained in (IIb), and so they indeed come from
G2-metrics.

This orbit type has a higher dimensional generalisation as follows.

Example 7.2 (G/K = Sp(m+1)/(Sp(m)U(1)) ≈ CP2m+1, the twistor space ofHPm). Now
d1 = 2, d2 = 4m andκ1 = −4m(m+ 2)2. There are again two invariant Einstein metrics
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onG/K, the Fubini–Study metric and the Ziller metric, neither of which are induced by
the Killing form whenm > 1.

Form = 1 this is just the previous example.
Form > 1 the inequalityd2 < 4d1/(d1 − 1) no longer holds, so expansions of type (I)

no longer exist. (Note that equality holds precisely whenm = 2.)

For family (II) we find that the possibilities forα(3)0 are:

(a) α(3)0 = −(2m/(m+ 1)(4m+ 1)), or

(b) α(3)0 = −(2m/(m2 + 3m+ 1)(4m+ 1)),

corresponding to the Fubini–Study metric onG/K and the Ziller Einstein metric, respec-
tively.

We find fromTheorem 5.1that the conditions for there to be rational resonances other
than−1,2 are, respectively:

(IIa) (4m2 + 13m+ 1)(m+ 1)(4m+ 1) is a perfect square,
(IIb) (4m3 + 5m2 −m+ 1)(m2 + 3m+ 1)(4m+ 1) is a perfect square.

For (IIa), let us writeφ(m), ρ(m),ψ(m) for the factors 4m2 + 13m + 1,m + 1,4m + 1,
respectively(m > 1). It is straightforward to show by repeated long division of polynomials
thatφ(m),ψ(m) are always coprime, while the only common prime factors ofφ(m), ρ(m)

(respectively,ρ(m),ψ(m)) are 2 (respectively, 3). Ifφ(m)ρ(m)ψ(m) is a perfect square,
therefore, we can write

φ(m) = 2jp2N1
1 · · ·p2Na

a , ρ(m) = 2k3Cp2Na+1
a+1 · · ·p2Na+b

a+b ,

ψ(m) = 3qp2Na+b+1
a+b+1 · · ·p2Na+b+c

a+b+c ,

wherej + k andq+ C are even.
Now (2m+ 2)2 < φ(m) < (2m+ 4)2, and we see thatφ(m) is a square only ifm = 8

(whenφ(m) = (2m+ 3)2). In this caseφ(m)ρ(m)ψ(m) is not a perfect square, so we may
assume from now on thatj and hencek is odd. Moreover, 3ψ(m) ≡ 3 modulo 4 so is not
a square, so we deduce thatq and henceC are even. It follows thatψ(m) = 4m + 1 and
2ρ(m) = 2m+ 2 are squares. Working modulo 8, and noting that squares are congruent to
0, 1 or 4 modulo 8, we see that this is impossible.

For (IIb) similar arguments show that

4m3 + 5m2 −m+ 1, 1
5(4m+ 1), 1

5(m
2 + 3m+ 1)

must all be squares. In particular, we must have an integral point on the elliptic curve

y2 = 4m3 + 5m2 −m+ 1.

Siegel’s theorem shows that there can only be finitely many suchm. Moreover, the pro-
gram Ratpoints of Elkies, Stahlke and Stoll shows that the only integral points(m, y)

with 1 ≤ m ≤ 106 are (1, 3) and (32, 369), and for the latter(4m + 1)/5 is not
integral.
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To summarise, ifm = 1 (i.e.M has dimension 7) we have non-trivial Painlevé expansions
of types (I) and (IIb). Ifm > 1 then there is no expansion of type (I) and, for the range of
m that we have checked (up to 106) no type (IIb) expansion either (we conjecture that there
is no (IIb) expansion for anym > 1). There is never a non-trivial expansion with leading
term (IIa).

Example 7.3 (G/K = G2/(SU(2)SO(2))). This is the twistor space of the quaternionic
symmetric spaceG2/SO(4). Now d1 = 2, d2 = 8 andκ1 = −128. These are the same
values as in casem = 2 of Example 7.2, so we deduce that there are no rational resonances
other than−1,2 and hence only a trivial Painlevé expansion.

Example 7.4 (G/K = (Sp(m+1)Sp(1))/(Sp(m)FSp(1)) ≈ S4m+3). Now Sp(m)FSp(1)
⊂ Sp(m)Sp(1)Sp(1) and sod1 = 3, d2 = 4m. Also we may computeκ1 = −(32/9)m(m+
2)2.

Note that the inequalityd2 < 4d1/(d1 − 1) needed for family (I) to exist is satisfied only
for m = 1. In this case we have(m1,m2,m3) = (8,3,−2) andTheorem 6.1gives a full
Painlevé family.

For family (II), we find from(4.1) that the two possible values forα(3)0 are:

(a) α(3)0 = −3m/(2m+ 1)2, which corresponds to the constant curvature metric;

(b) α(3)0 = −3m/(2m + 1)(4m2 + 14m + 9), which corresponds to the Jensen squashed
metric[8].

By Theorem 5.1the resonances are:

(IIa) R = −1,−1/(2m+ 1), (2m+ 2)/(2m+ 1),2;
(IIb) R = −1,2 and the roots ofR(R−1) = −(4m2+10m+6)/(2m+1)(4m2+14m+9).

In (IIa) since compatibility automatically holds at the first positive resonance, it follows
from Lemma 6.3we get a 2-parameter family of Painlevé expansions for the Ricci-flat
equations.

In Case (IIb) we have four rational resonances if

(8m3 + 16m2 − 8m− 15)(2m+ 1)(4m2 + 14m+ 9) (7.1)

is a perfect square; otherwise−1,2 are the only rational resonances, in which case by
Lemma 6.3the Painlevé expansion is just the cone over the Jensen metric, modulo the
position of the singularity.

Using similar methods to those inExample 7.2, we see that if(7.1) is a square, then
8m3 + 16m2 − 8m− 15, (2m+ 1)/3 and(4m2 + 14m+ 9)/3 are all squares. In particular,
the elliptic curvey2 = 8m3+16m2−8m−15 will have integral points. As before, Siegel’s
theorem tells us there are only finitely many such points. On the other hand, Ratpoints
shows that the only integral points(m, y) with 1 ≤ m ≤ 106 are (1, 1), (8, 71), (20, 265)
and (68, 1609). The only one of these where(2m+ 1)/3 equals a square ism = 1. Hence
for 1 ≤ m ≤ 106, onlym = 1 satisfies our Diophantine condition.

In the special casem = 1 of (IIb), the resonances areR = −1,4/9,5/9,2. Thus we can
takeQ = 9 so positive resonances occur atj = 4,5,18. NowLemma 6.5tells us that all
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the compatibility conditions hold. Hence we get a full 3-parameter Painlevé family for the
Ricci-flat equations.

Using arguments similar to those at the end ofExample 7.1, one can show that there is
a 2-parameter subfamily of the above 3-parameter Painlevé family which corresponds to
the (local) metrics with Spin(7) holonomy found in[3,7]. This 2-parameter subfamily is
obtained by setting the free parameter at the first positive resonance to be 0. We note that
the Spin(7) condition is given here by the equations

4v2
1 = −27z3,

(
8v1

3
+ 2v2

)2

= 6z1,

and the constraint equationz2
2 = −32z1z3.

To summarise, ifm = 1 (i.e.M is eight-dimensional) we have non-trivial Painlevé expan-
sions of types (I)–(IIb), with those of types (I) and (IIb) depending on the full number of
parameters. Ifm > 1 there is no expansion of type (I) and, at least for 1< m ≤ 106, no
type (IIb) expansion either (we conjecture that there is no (IIb) expansion for anym > 1).
Type (IIa) expansion exists for allm.

Example 7.5. TakeG/K = SO(2m)/(SO(m)U(1)), where SO(m)U(1) ⊂ U(m) ⊂
SO(2m) andm ≥ 3. Since

d1 = 1
2(m+ 2)(m− 1), d2 = m(m− 1),

we haved2 ≥ 4d1/(d1−1), and so Painlevé expansions of type (I) never occur. From Wang
and Ziller10[10, p. 189]there is noG-invariant Einstein metric onG/K for m > 3, while
for m = 3 there is a unique such metric. So form > 3 we obtain examples of principal
orbits for which the system(3.2)–(3.6)with constraints(3.7) and (3.8)has no (real) Painlevé
expansions.

On the other hand, whenm = 3, Eq. (4.1)has the unique rootα(3)0 = −(3/22), and
as inRemark 5.5the resonances are−1,1,2. We therefore obtain a 2-parameter Painlevé
expansion of type (II) for the Ricci-flat equations.

8. The case of a primitive principal orbit

Let us now consider Case (iv) ofSection 3, that is, whenk is a maximal Ad(K)-invariant
subalgebra ofg. Recall that inSection 3we have defined constantsκ1 = A2

2/A1A3 and
κ2 = A2

1/A2A4 which are negative.

Theorem 8.1. The possible leading terms are as follows:

(Ia) If d2(d1 − 1) < 4d1 we can have
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

m1
m2
m3
m4


 = 2d1d2

4d1 − d2(d1 − 1)




1 + 1

d1

1 − 2

d2

4d1 − d2(d1 − 1)

−d1d2

1 + 2

d1
+ 2

d2



,

(
n1
n2

)
=
(−1

−1

)
,



α(1)

α(2)

α(3)

α(4)


 =




α(1)

α(2)

−d1d2

4d1 − d2(d1 − 1)

α(4)


 ,

(
β(1)

β(2)

)
= d1d2

4d1 − d2(d1 − 1)




2(1 − n)

d2(d1 − 1)
d1 + 1

d1 − 1


 ,

where

κ1α
(1)α(3) = (α(2))2, κ2α

(2)α(4) = (α(1))2.

(Ib) If d1(d2 − 1) < 4d2 andd1 
= 2 we can have



m1
m2
m3
m4


 = 2d1d2

4d2 − d1(d2 − 1)




1 − 2

d1

1 + 1

d2

1 + 2

d1
+ 2

d2

4d2 − d1(d2 − 1)

−d1d2



,

(
n1
n2

)
=
(−1

−1

)
,



α(1)

α(2)

α(3)

α(4)


 =




α(1)

α(2)

α(3)

−d1d2

4d2 − d1(d2 − 1)


 ,

(
β(1)

β(2)

)
= d1d2

4d2 − d1(d2 − 1)




n− 1

d2(d1 − 1)
d1 − 2

d1 − 1




with the same constraint relations forα(i) as in(Ia).
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(Ic) If d1 = 2 we can have

m1
m2
m3
m4


 =




0
2
4

−2


 ,

(
n1
n2

)
=
(−1
n2

)
,



α(1)

α(2)

α(3)

α(4)


 =




α(1)

α(2)

α(3)

−d2

d2 + 1


 ,

(
β(1)

β(2)

)
=
(

1

β(2)

)
,

wheren2 = 0 or 1 and the same constraint relations forα(i) as in(Ia) hold. Also, we
haveβ(2) = α(1) whenn2 = 1 andβ(2) is arbitrary whenn2 = 0.

(II) In all cases we can have


m1

m2

m3

m4

n1

n2




=




−2

−2

−2

−2

−1

−1



,



α(1)

α(2)

α(3)

α(4)


 =




α(1)

α(2)

−1

3

(
α(1) + 2α(2) − n+ d2

n− 1

)

−1

3

(
2α(1) + α(2) − n+ d1

n− 1

)



,

(
β(1)

β(2)

)
=




1

d1 − 1

−d1

d1 − 1


 ,

whereα(1) andα(2) are uniquely determined byτ = A1α
(2)/A2α

(1) which must be a
solution of the Einstein equation for G-invariant metrics on G/K.

Outline of proof. Since the required analysis is very similar to that for Case (iii), we will
only indicate the differences. First suppose thatm1 = 0. As before,n2 > −1 and we may
then conclude thatn1 = −1. However, this time we have(m2,m3,m4) = (2,4,−2)β(1) and
we obtain a contradiction as before except whenβ(1) > 0 andd1 = 2. In this situation, the
equations imply thatm4 = −2, β(1) = 1 andα(4) = −d2/(d2 +1). Hencem2 = 2,m3 = 4
and we are in Case (Ic). The rest of the conclusions come from examiningEq. (3.14)further.

So if d1 
= 2, thenm1 
= 0 andn1 = n2 = −1 as in Case (iii). We again conclude that
m1,m2,m3,m4 are either all different or they are all equal. Case (Ia) corresponds to the
situation whenm3 is the smallest among themi and Case (Ib) corresponds to the situation
whenm4 is smallest. The Diophantine inequalities result from similar considerations as in
Section 4. Notice that in Case (Ib)d1 cannot be 2 because otherwise there would be ans−2

power on the left-hand side of(3.14)which is not balanced by any term on the right-hand
side. Thus we see that Case (Ic) is really the complement of Case (Ib).
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When all themi are equal, there are again 2 subcases, as in Case (iii). Eithermi = −2,
which gives Case (II), or elsemi < −2.

In the former case, one easily checks thatα(3) andα(4) can be expressed in terms ofα(1)

andα(2) as indicated above, while the latter constants must satisfy the system

(α(1))2 + 2α(1)α(2) + 3(α(2))2

κ1
=
(
n+ d2

n− 1

)
α(1),

(α(2))2 + 2α(1)α(2) + 3(α(1))2

κ2
=
(
n+ d1

n− 1

)
α(2).

If we divide these equations by(α(1))2, we see immediately that they say thatα(1) and hence
α(2) are determined by the ratioα(2)/α(1), which by(9.1) and (9.2)is just the asymptotic
value ofA2f

2
1 /A1f

2
2 . As in Case (iii), the above system corresponds to a cubic equation in

τ, which is precisely the Einstein condition forG-invariant metrics on the principal orbit
G/K.

The latter case can occur only if

(9 − κ1κ2)
2 = 4κ1κ2(κ1 − 3)(κ2 − 3)

holds. Then we must havemi = −2(d1 − 1)β(1) < −2, β(2) = −d1β
(1), n1 = n2 = −1

and

α(1) + 2α(2) + 3α(3) = 0, 2α(1) + α(2) + 3α(4) = 0,

(9 − κ1κ2)α
(1) − κ2(2κ1 − 6)α(2) = 0.

We will refer to this last case as Case (III). However, we have not listed this case in the
statement ofTheorem 8.1because we shall show later that this set of leading terms does
not give rise to convergent Painlevé expansions.

Remark 8.2. Note the appearance of the conditiond2 < 4d1/(d1−1) (and the correspond-
ing condition withd1, d2 interchanged) as in Case (iii). In particular,(d1, d2) satisfies both
conditions iffd1 + d2 ≤ 8, ord1 = 1, ord2 = 1, or(d1, d2) = (7,2) or (2,7).

Theorem 8.3. The resonances in the Painlevé analysis of the system(3.9)–(3.14)subjected
to the constraints(3.16)and(3.17)are as follows:

Cases(Ia) and(Ib) R = −1,0,1,2;
Case(Ic) R = −1,0,2,where−1 has multiplicity2 whenn2 = 1 and multiplic-

ity 1 otherwise, and0 has multiplicity1 whenn2 = 1 and multiplicity
2 otherwise.

Case(II) R = −1,2 and the roots of the equation

R(R− 1) = 2

1 − n
− 4n

d1d2
(α(3) + α(4)), (8.1)

whereα(3) andα(4) are given inTheorem 8.1(II).
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The proof of this theorem proceeds in a similar fashion as inSection 5. We will summarise
below some useful information from the proof and discuss the resonance analysis for the
undisplayed set (III) of possible leading terms inTheorem 8.1.

For Case (Ia), ker(Z(R = 1)) is spanned by(−4α(1),−2α(2),0,−6α(4), (d1 + 1)/(d1 −
1),−(2d1/(d1 − 1))), ker(Z(R = 2)) is spanned by(

d2(d1 + 1)(d1 − 1)

(n− 1)d1
α(1),

(
d2(d1 + 1)

n− 1
− 2

)
α(2),

(
d2(d1 + 1)2

(n− 1)d1
− 4

)
α(3),(

d2(d1 + 1)(d1 − 2)

(n− 1)d1
+ 2

)
α(4),−2,

d2(d1 + 1)

n− 1

)
,

ker(Z(R = 2)T) is spanned by(0,0, (4d1 − d2(d1 − 1))/2d2,0,−2d1,−(d1 + 1)). As in
Remark 6.2, we see that we can chooseQ to be 1 except whend2 = 3, d1 
= 3, in which
case we can takeQ = d1 + 3.

For Case (Ib), ker(Z(R = 1)) is spanned by(2α(1),4α(2),6α(3),0, (d1 − 2)/(d1 −
1), d1/(d1 − 1)), ker(Z(R = 2)) is spanned by((

(d1 − 2)d2(d1 − 1)

(n− 1)d1

)
α(1),

(
(d1 − 2)d2

n− 1
+ 1

)
α(2),

(
(d1 − 2)d2(d1 + 1)

(n− 1)d1
+ 2

)
α(3),

(
(d1 − 2)2d2

(n− 1)d1
− 1

)
α(4),1,

(d1 − 2)d2

n− 1

)
,

ker(Z(R = 2)T) is spanned by(0,0,0, (4d2 − d1(d2 − 1))/2d2, d1,−(d1 − 2)). Again, we
can takeQ = 1 except whend1 = 3, d2 
= 3 in which case we can takeQ = d2 + 3.

For Case (Ic), ker(Z(R = 2)) is spanned by(0, α(2),2α(3),−α(4),1,0), which is simply
the vector given in (Ib) withd1 set to be 2. The ker(Z(R = 2)T) is spanned by(0,0,0, d2 +
1,2d2,0). We can setQ to be 1 as well.

For Case (II) ker(Z(R = 2)) consists of vectors of the form((
d1 − 1

d1

)
ζ2α

(1), (ζ1 + ζ2)α
(2),

(
2ζ1 +

(
d1 + 1

d1

)
ζ2

)
α(3),(

−ζ1 +
(
d1 − 2

d1

)
ζ2

)
α(4), ζ1, ζ2

)
,

where(ζ1, ζ2)T lies in the null space of the matrix

2

d1 − 1

(
2n+ d1d2

n− 1
− 2α(1) − 2α(2)

)
1 − n

d2

1 − n

d1d2

1
1

d1


 .

So ker(Z(R = 2)) is two-dimensional if 2α(1)+2α(2) = (2n+d1d2)/(n−1), and otherwise
is spanned by(α(1), α(2), α(3), α(4),−1/(d1 − 1), d1/(d1 − 1)). Similarly, ker(Z(R = 2)T)
consists of vectors of the form(

(d1 − 1)ζ2,

(
1 − n

d2

)
ζ1 + d1ζ2,

(
2(1 − n)

d2

)
ζ1 + (d1 + 1)ζ2,(

n− 1

d2

)
ζ1 + (d1 − 2)ζ2, ζ1, ζ2

)
,
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where(ζ1, ζ2)T lies in the null space of the transpose of the matrix above. So ker(Z(R = 2)T)
is two-dimensional if 2α(1) + 2α(2) = (2n + d1d2)/(n − 1) and otherwise is spanned by
(1,1,1,1,2d2/(n− 1),2).

In Case (III), the recursion operatorZ(j/Q) is given by the matrix


j

Q
0 0 0 0 −2

(
d1 − 1

d1

)
α(1)

0
j

Q
0 0 −2α(2) −2α(2)

0 0
j

Q
0 −4α(3) −2

(
d1 + 1

d1

)
α(3)

0 0 0
j

Q
2α(4) −2

(
d1 − 2

d1

)
α(4)

0
n− 1

d2(d1 − 1)

2(n− 1)

d2(d1 − 1)

−(n− 1)

d2(d1 − 1)
0 0

−1
−d1

d1 − 1
−
(
d1 + 1

d1 − 1

)
−
(
d1 − 2

d1 − 1

)
0 0




.

The difference between this operator and that for Case (II) is that the zero 2× 2 matrix in
the lower right-hand corner is replaced by(j/Q− 1) times the identity matrix. As a result
of this difference, in the present case, for allj > 0,Z(j/Q) has a one-dimensional kernel
spanned by(α(1), α(2), α(3), α(4), j/2Q(1−d1), jd1/2Q(d1−1)). Likewise, ker(Z(j/Q)T)
is spanned by(1,1,1,1, jd2/Q(n− 1), j/Q).

Theorem 8.4. Consider the system(3.9)–(3.14)with the constraints(3.16)and(3.17):

1. For leading terms of types(Ia, b, c)all compatibility conditions hold. Moreover, the
Hamiltonian constraint(3.15)fixes the degree of freedom at the top resonance. Hence
we have convergent Painlevé expansions depending on the full number of parameters(3)
except in case(Ic) with n2 = 1, when we have a 2-parameter family instead. Moreover,
the expansions are meromorphic in s(rather than a fractional power of s) except in case
(Ia) with d2 = 3, d1 
= 3 and in case(Ib) with d1 = 3, d2 
= 3.

2. For leading terms of type(II), if 2α(1) + 2α(2) 
= (2n + d1d2)/(n − 1) and all earlier
compatibility conditions hold, then the compatibility condition at the top resonance
R = 2 holds as well, and the Hamiltonian constraint(3.15)fixes the degree of freedom
at the top resonance.

3. For leading terms of type(III), the compatibility conditions fail to hold all the way.

The proofs for parts 1 and 2 are similar to those for the corresponding leading terms in
Case (iii). Below we will indicate the argument for part 3.

In writing out the recursion relations for leading terms of type (III), letm = 2(1−d1)β
(1)
0

denote the common value of the exponentsmi. Then−m−2 equalsj0/Q for some positive
integerj0. We will show that the compatibility condition atj = j0 cannot hold. The
right-hand side of the recursion relation at stepj is
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

∑j−1
1 2

(
d1 − 1

d1

)
α
(1)
k β

(2)
j−k

∑j−1
1 2α(2)k

(
β
(1)
j−k + β

(2)
j−k
)

∑j−1
1 α

(3)
k

(
4β(1)j−k + 2

(
d1 + 1

d1

)
β
(2)
j−k

)
∑j−1

1 α
(4)
k

(
−2β(1)j−k + 2

(
d1 − 2

d1

)
β
(2)
j−k

)
(

1 −
(
j − j0

Q

))
β
(1)
j−j0(

1 −
(
j − j0

Q

))
β
(2)
j−j0




.

In view of the expression of the generator of ker(Z(j/Q)T), the compatibility condition at
j = j0 becomes

0 = 2

(
d1 − 1

d1

) j0−1∑
k=1

(
α
(1)
k +

(
d1

d1 − 1

)
α
(2)
k +

(
d1 + 1

d1 − 1

)
α
(3)
k +

(
d1 − 2

d1 − 1

)
α
(4)
k

)

×β(2)j0−k +
j0−1∑
k=1

2(α(2)k + 2α(3)k − α
(4)
k )β

(1)
j0−k +

(
j0d2

Q(n− 1)

)
β
(1)
0 +

(
j0

Q

)
β
(2)
0 .

If compatibility breaks down beforej = j0 then we are done. Otherwise, by the earlier
recursion, the first two sums are zero and we are reduced to the condition

d2β
(1)
0 + (n− 1)β(2)0 = 0,

which cannot hold since, from above,β(2)0 = −d1β
(1)
0 , andβ(1)0 
= 0 by assumption.

9. Asymptotics of the Painlevé solutions

Our Painlevé expansions give local solutions of the cohomogeneity one Ricci-flat equa-
tions, and the asymptotic behaviour near the movable singularity can be translated into cor-
responding behaviour of the Ricci-flat metrics. Recall that our metricḡ = dt2+f1(t)

2B|p1+
f2(t)

2B|p2, wheref 2
1 = eq1 andf 2

2 = eq2.
It then follows that:

dt =
(
z1

A1

)d1/2(n−1) (
z2

A2

)d2/2(n−1)

ds,

and

f 2
1 =

(
z1

A1

)(1−d2)/(n−1) (
z2

A2

)d2/(n−1)

, (9.1)
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f 2
2 =

(
z1

A1

)d1/(n−1) (
z2

A2

)(1−d1)/(n−1)

. (9.2)

For leading term behaviour of type (Ia), we may assume thats = 0 corresponds tot = 0 and
we havet ∼ s(4d1+d2)/(4d1−d2(d1−1)). (We suppress multiplicative constants here and in what
follows.) Furthermore,f1(t)

2 ∼ t−(2d2/(4d1+d2)) andf2(t)
2 ∼ t4d1/(4d1+d2). Therefore, ast

tends to 0, the volume of the principal orbits tends to 0 even as thep1 directions blow up.
Note that although the variablesz1 andz2 do not blow up in this leading term behaviour,
one of the geometric variables,f1 in this case, does blow up.

For leading term behaviour of types (Ib) and (Ic), again we may assume thats = 0
corresponds tot = 0 and we havet ∼ s(d1+4d2)/(4d2−d1)(d2−1). Also,f1(t)

2 ∼ t4d2/(d1+4d2)

andf2(t)
2 ∼ t−(2d1/(d1+4d2)). Hence ast tends to 0, the volume of the principal orbits tends

to 0, but this time thep2 directions blow up.
Finally, for leading term behaviour of type (II), we may assume thats = 0 corresponds

to t = +∞ and we havet ∼ s−(1/(n−1)). Furthermore,f1(t)
2 ∼ (n − 1)2(A1/α

(1)
0 )t2 and

f2(t)
2 ∼ (n− 1)2(A2/α

(2)
0 )t2. Henceḡ is asymptotic to the Ricci-flat metric cone onG/K

with aG-invariant Einstein metric, and so has Euclidean volume growth.
The above analysis applies to both Cases (iii) and (iv), as well as to Case (i), provided

that the particular leading term behaviour exists, because the transformation from thezi to
fj depends only on the basis{w(1), w(2)} chosen and the leading term behaviour. Finally,
we observe that as a result of the Painlevé analysis in this paper and in[6], it follows that the
only Painlevé expansions among the two-summand case which exhibit a Taub-NUT-style
end behaviour occur when one of the irreducible summands is Abelian (i.e. Case (ii) of
Section 3).
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